1
|
Thoma G, Markert C, Lueoend R, Miltz W, Spanka C, Bollbuck B, Wolf RM, Srinivas H, Penno CA, Kiffe M, Gajewska M, Bednarczyk D, Wieczorek G, Evans A, Beerli C, Röhn TA. Discovery of Amino Alcohols as Highly Potent, Selective, and Orally Efficacious Inhibitors of Leukotriene A4 Hydrolase. J Med Chem 2023; 66:16410-16425. [PMID: 38015154 DOI: 10.1021/acs.jmedchem.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The discovery of chiral amino alcohols derived from our previously disclosed clinical LTA4H inhibitor LYS006 is described. In a biochemical assay, their optical antipodes showed similar potencies, which could be rationalized by the cocrystal structures of these compounds bound to LTA4H. Despite comparable stabilities in liver microsomes, they showed distinct in vivo PK properties. Selective O-phosphorylation of the (R)-enantiomers in blood led to clearance values above the hepatic blood flow, whereas the (S)-enantiomers were unaffected and exhibited satisfactory metabolic stabilities in vivo. Introduction of two pyrazole rings led to compound (S)-2 with a more balanced distribution of polarity across the molecule, exhibiting high selectivity and excellent potency in vitro and in vivo. Furthermore, compound (S)-2 showed favorable profiles in 16-week IND-enabling toxicology studies in dogs and rats. Based on allometric scaling and potency in whole blood, compound (S)-2 has the potential for a low oral efficacious dose administered once daily.
Collapse
Affiliation(s)
- Gebhard Thoma
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Christian Markert
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Rainer Lueoend
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Wolfgang Miltz
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Carsten Spanka
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Birgit Bollbuck
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Romain M Wolf
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Honnappa Srinivas
- Chemical Biology & Therapeutics, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Carlos A Penno
- Chemical Biology & Therapeutics, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Michael Kiffe
- PK Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Monika Gajewska
- PK Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Dallas Bednarczyk
- Discovery & Translational Lab, Biomedical Research, Novartis Pharma AG, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Grazyna Wieczorek
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Amanda Evans
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Christian Beerli
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Till A Röhn
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| |
Collapse
|
2
|
Röhn TA, Numao S, Otto H, Loesche C, Thoma G. Drug discovery strategies for novel leukotriene A4 hydrolase inhibitors. Expert Opin Drug Discov 2021; 16:1483-1495. [PMID: 34191664 DOI: 10.1080/17460441.2021.1948998] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
IntroductionLeukotriene A4 hydrolase (LTA4H) is the final and rate limiting enzyme regulating the biosynthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid mediator implicated in a large number of inflammatory pathologies. Inhibition of LTA4H not only prevents LTB4 biosynthesis but also induces a lipid mediator class-switch within the 5-lipoxygenase pathway, elevating biosynthesis of the anti-inflammatory lipid mediator Lipoxin A4. Ample preclinical evidence advocates LTA4H as attractive drug target for the treatment of chronic inflammatory diseases.Areas coveredThis review covers details about the biochemistry of LTA4H and describes its role in regulating pro- and anti-inflammatory mediator generation. It summarizes recent efforts in medicinal chemistry toward novel LTA4H inhibitors, recent clinical trials testing LTA4H inhibitors in pulmonary inflammatory diseases, and potential reasons for the discontinuation of former development programs.Expert opinionGiven the prominent role of LTB4 in initiating and perpetuating inflammation, LTA4H remains an appealing drug target. The reason former attempts targeting this enzyme have not met with success in the clinic can be attributed to compound-specific liabilities of first-generation inhibitors and/or choice of target indications to test this mode of action. A new generation of highly potent and selective LTA4H inhibitors is currently undergoing clinical testing in indications with a strong link to LTB4 biology.
Collapse
Affiliation(s)
- Till A Röhn
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Shin Numao
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Heike Otto
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Christian Loesche
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gebhard Thoma
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
3
|
Qin R, Wang H, Yan A. Classification and QSAR models of leukotriene A4 hydrolase (LTA4H) inhibitors by machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:411-431. [PMID: 33896285 DOI: 10.1080/1062936x.2021.1910862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Leukotriene A4 hydrolase (LTA4H) is an important anti-inflammatory target which can convert leukotriene A4 (LTA4) into pro-inflammatory substance leukotriene B4 (LTB4). In this paper, we built 18 classification models for 463 LTA4H inhibitors by using support vector machine (SVM), random forest (RF) and K-Nearest Neighbour (KNN). The best classification model (Model 2A) was built from RF and MACCS fingerprints. The prediction accuracy of 88.96% and the Matthews correlation coefficient (MCC) of 0.74 had been achieved on the test set. We also divided the 463 LTA4H inhibitors into six subsets using K-Means. We found that the highly active LTA4H inhibitors mostly contained diphenylmethane or diphenyl ether as the scaffold and pyridine or piperidine as the side chain. In addition, six quantitative structure-activity relationship (QSAR) models for 172 LTA4H inhibitors were built by multiple linear regression (MLR) and SVM. The best QSAR model (Model 6A) was built by using SVM and CORINA Symphony descriptors. The coefficients of determination of the training set and the test set were equal to 0.81 and 0.79, respectively. Classification and QSAR models could be used for subsequent virtual screening, and the obtained fragments that were important for highly active inhibitors would be helpful for designing new LTA4H inhibitors.
Collapse
Affiliation(s)
- R Qin
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - H Wang
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
4
|
Markert C, Thoma G, Srinivas H, Bollbuck B, Lüönd RM, Miltz W, Wälchli R, Wolf R, Hinrichs J, Bergsdorf C, Azzaoui K, Penno CA, Klein K, Wack N, Jäger P, Hasler F, Beerli C, Loetscher P, Dawson J, Wieczorek G, Numao S, Littlewood-Evans A, Röhn TA. Discovery of LYS006, a Potent and Highly Selective Inhibitor of Leukotriene A 4 Hydrolase. J Med Chem 2021; 64:1889-1903. [PMID: 33592148 DOI: 10.1021/acs.jmedchem.0c01955] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cytosolic metalloenzyme leukotriene A4 hydrolase (LTA4H) is the final and rate-limiting enzyme in the biosynthesis of pro-inflammatory leukotriene B4 (LTB4). Preclinical studies have validated this enzyme as an attractive drug target in chronic inflammatory diseases. Despite several attempts, no LTA4H inhibitor has reached the market, yet. Herein, we disclose the discovery and preclinical profile of LYS006, a highly potent and selective LTA4H inhibitor. A focused fragment screen identified hits that could be cocrystallized with LTA4H and inspired a fragment merging. Further optimization led to chiral amino acids and ultimately to LYS006, a picomolar LTA4H inhibitor with exquisite whole blood potency and long-lasting pharmacodynamic effects. Due to its high selectivity and its ability to fully suppress LTB4 generation at low exposures in vivo, LYS006 has the potential for a best-in-class LTA4H inhibitor and is currently investigated in phase II clinical trials in inflammatory acne, hidradenitis suppurativa, ulcerative colitis, and NASH.
Collapse
|
5
|
Bhatt L, Roinestad K, Van T, Springman E. Recent advances in clinical development of leukotriene B4 pathway drugs. Semin Immunol 2017; 33:65-73. [DOI: 10.1016/j.smim.2017.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/04/2017] [Accepted: 08/08/2017] [Indexed: 12/23/2022]
|
6
|
Zhang F, Wu D, Wang GL, Hou S, Ou-Yang P, Huang J, Xu XY. Synthesis and biological evaluation of novel 1,2,3-benzotriazin-4-one derivatives as leukotriene A 4 hydrolase aminopeptidase inhibitors. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Werz O, Gerstmeier J, Garscha U. Novel leukotriene biosynthesis inhibitors (2012-2016) as anti-inflammatory agents. Expert Opin Ther Pat 2017; 27:607-620. [DOI: 10.1080/13543776.2017.1276568] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
8
|
Quantitative structure activity relationship and binding investigation of N-alkyl glycine amides as inhibitors of Leukotriene A4 hydrolase. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1121-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Barchuk W, Lambert J, Fuhr R, Jiang JZ, Bertelsen K, Fourie A, Liu X, Silkoff PE, Barnathan ES, Thurmond R. Effects of JNJ-40929837, a leukotriene A4 hydrolase inhibitor, in a bronchial allergen challenge model of asthma. Pulm Pharmacol Ther 2014; 29:15-23. [PMID: 25018015 DOI: 10.1016/j.pupt.2014.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/10/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Leukotriene B4 (LTB4) is a chemotactic mediator implicated in the pathogenesis of asthma. JNJ-40929837 is an oral inhibitor of LTA4 hydrolase, which catalyzes LTB4 production. We evaluated the effects of JNJ-40929837 in a human bronchial allergen challenge (BAC) model. In this double-blind, 3-period crossover study, 22 patients with mild, atopic asthma were randomized to one of three treatments per period: 100 mg/day JNJ-40929837 for 6 days followed by 50 mg/day on day 7; 10 mg/day montelukast for 6 days; and matched placebo. The BAC was performed on day 6 of each treatment period. Primary outcome was BAC-induced late asthmatic response (LAR) measured by maximal percent reduction in forced expiratory volume (FEV1) in one second. Secondary outcomes included early asthmatic response (EAR) by maximal percent reduction in FEV1, EAR and LAR evaluated by area under the FEV1/time curve (AUC0-2, AUC3-10, respectively), change in baseline FEV1 after 5-day treatment, safety, and correlation of JNJ-40929837 to the divalent cation ionophore A23187-stimulated whole blood LTB4 levels and sputum basal LTB4 levels. No significant differences were observed in the primary or secondary FEV1 endpoints with JNJ-40929837 versus placebo. Compared with placebo (n = 17, LS mean = 27.7), there was no significant attenuation of the maximal percent reduction in the LAR FEV1 with JNJ-40929837 (n = 16, LS mean = 28.6, P = 0.63) but montelukast (n = 17, LS mean = 22.6, P = 0.01) significantly attenuated the LAR. JNJ-40929837 substantially inhibited LTB4 production in whole blood, decreased sputum LTB4 levels and was well-tolerated. The number of adverse events leading to study withdrawal was the same in JNJ-40929837 and placebo groups. In conclusion, JNJ-40929837 demonstrated target engagement in blood and sputum. No significant impact in response to allergen inhalation was observed with JNJ-40929837 versus placebo. REGISTRATION This study is registered at ClinicalTrials.gov: NCT01241422.
Collapse
Affiliation(s)
- W Barchuk
- Immunology, Janssen Research & Development, LLC, San Diego, CA, USA.
| | - J Lambert
- Early Phase Clinical Unit, PAREXEL International, Harrow, UK
| | - R Fuhr
- Early Phase Clinical Unit, PAREXEL International, Berlin, Germany
| | - J Z Jiang
- Biostatistics, Janssen Research & Development, LLC, San Diego, CA, USA
| | - K Bertelsen
- Clinical Pharmacology, Janssen Research & Development, LLC, Titusville, NJ, USA
| | - A Fourie
- Immunology, Janssen Research & Development, LLC, San Diego, CA, USA
| | - X Liu
- Immunology, Janssen Research & Development, LLC, San Diego, CA, USA
| | - P E Silkoff
- Immunology, Janssen Research & Development, LLC, Spring House, PA, USA
| | - E S Barnathan
- Immunology, Janssen Research & Development, LLC, Spring House, PA, USA
| | - R Thurmond
- Immunology, Janssen Research & Development, LLC, San Diego, CA, USA
| |
Collapse
|
10
|
Ward P, La D. Testicular distribution and toxicity of a novel LTA4H inhibitor in rats. Toxicol Appl Pharmacol 2014; 278:26-30. [DOI: 10.1016/j.taap.2014.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 11/27/2022]
|
11
|
Louvel J, Carvalho JFS, Yu Z, Soethoudt M, Lenselink EB, Klaasse E, Brussee J, Ijzerman AP. Removal of human ether-à-go-go related gene (hERG) K+ channel affinity through rigidity: a case of clofilium analogues. J Med Chem 2013; 56:9427-40. [PMID: 24224763 DOI: 10.1021/jm4010434] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cardiotoxicity is a side effect that plagues modern drug design and is very often due to the off-target blockade of the human ether-à-go-go related gene (hERG) potassium channel. To better understand the structural determinants of this blockade, we designed and synthesized a series of 40 derivatives of clofilium, a class III antiarrhythmic agent. These were evaluated in radioligand binding and patch-clamp assays to establish structure-affinity relationships (SAR) for this potassium channel. Efforts were especially focused on studying the influence of the structural rigidity and the nature of the linkers composing the clofilium scaffold. It was shown that introducing triple bonds and oxygen atoms in the n-butyl linker of the molecule greatly reduced affinity without significantly modifying the pKa of the essential basic nitrogen. These findings could prove useful in the first stages of drug discovery as a systematic way of reducing the risk of hERG K(+) channel blockade-induced cardiotoxicity.
Collapse
Affiliation(s)
- Julien Louvel
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|