1
|
Luo XF, Zhou H, Deng P, Zhang SY, Wang YR, Ding YY, Wang GH, Zhang ZJ, Wu ZR, Liu YQ. Current development and structure-activity relationship study of berberine derivatives. Bioorg Med Chem 2024; 112:117880. [PMID: 39216382 DOI: 10.1016/j.bmc.2024.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Berberine is a quaternary ammonium isoquinoline alkaloid derived from traditional Chinese medicines Coptis chinensis and Phellodendron chinense. It has many pharmacological activities such as hypoglycemic, hypolipidemic, anti-tumor, antimicrobial and anti-inflammatory. Through structural modifications at various sites of berberine, the introduction of different groups can change berberine's physical and chemical properties, thereby improving the biological activity and clinical efficacy, and expanding the scope of application. This paper reviews the research progress and structure-activity relationships of berberine in recent years, aiming to provide valuable insights for the exploration of novel berberine derivatives.
Collapse
Affiliation(s)
- Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China.
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Alipour Noghabi S, Ghamari kargar P, Bagherzade G, Beyzaei H. Comparative study of antioxidant and antimicrobial activity of berberine-derived Schiff bases, nitro-berberine and amino-berberine. Heliyon 2023; 9:e22783. [PMID: 38058428 PMCID: PMC10696212 DOI: 10.1016/j.heliyon.2023.e22783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
In recent years, the scientific community has focused on traditional natural products and their potential therapeutic benefits. Berberine is a plant-derived isoquinoline alkaloid with a variety of biological properties and identified as a promising pharmacophore for discovering new therapeutic agents against various diseases. However, unfavorable pharmacokinetic properties of berberine have limited its clinical application so much that researchers pursue its structure modification to overcome this problem. This study focuses on the synthesis of new berberine derivatives to improve its antioxidant and antimicrobial potentials, which were characterized using CHNO and NMR instruments. Berberine extracted from barberry root was nitrated, reduced to amine and condensed with benzaldehyde derivatives to produce berberine-based Schiff bases. The H atom donating ability of all compounds was measured against DPPH free radicals, with IC50 values ranging from 18.28 to 108.20 μg ml-1. All berberine-based Schiff bases exhibited stronger antioxidant activity than nitro-berberine and amino-berberine. Only Schiff base derived from 4-hydroxybenzaldehyde showed slightly better antioxidant effects than original berberine. The inhibitory effects of the synthesized compounds were evaluated against important pathogenic fungal and bacterial strains using disk diffusion assays, with inhibition zone diameters ranging from 8.36 to 25.48 μg ml-1. Berberine itself only affected Candida albicans fungus. Nitrated berberine was effective against all microorganisms except Gram-negative Acinetobacter baumannii. The results suggest that structural modifications and functionalization can enhance the antimicrobial and antioxidant properties of berberine.
Collapse
Affiliation(s)
- Soheila Alipour Noghabi
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran
| | - Pouya Ghamari kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
3
|
Nguyen DV, Hengphasatporn K, Danova A, Suroengrit A, Boonyasuppayakorn S, Fujiki R, Shigeta Y, Rungrotmongkol T, Chavasiri W. Structure-yeast α-glucosidase inhibitory activity relationship of 9-O-berberrubine carboxylates. Sci Rep 2023; 13:18865. [PMID: 37914757 PMCID: PMC10620162 DOI: 10.1038/s41598-023-45116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Thirty-five 9-O-berberrubine carboxylate derivatives were synthesized and evaluated for yeast α-glucosidase inhibitory activity. All compounds demonstrated better inhibitory activities than the parent compounds berberine (BBR) and berberrubine (BBRB), and a positive control, acarbose. The structure-activity correlation study indicated that most of the substituents on the benzoate moiety such as methoxy, hydroxy, methylenedioxy, benzyloxy, halogen, trifluoromethyl, nitro and alkyl can contribute to the activities except multi-methoxy, fluoro and cyano. In addition, replacing benzoate with naphthoate, cinnamate, piperate or diphenylacetate also led to an increase in inhibitory activities except with phenyl acetate. 9, 26, 27, 28 and 33 exhibited the most potent α-glucosidase inhibitory activities with the IC50 values in the range of 1.61-2.67 μM. Kinetic study revealed that 9, 26, 28 and 33 interacted with the enzyme via competitive mode. These four compounds were also proved to be not cytotoxic at their IC50 values. The competitive inhibition mechanism of these four compounds against yeast α-glucosidase was investigated using molecular docking and molecular dynamics simulations. The binding free energy calculations suggest that 26 exhibited the strongest binding affinity, and its binding stability is supported by hydrophobic interactions with D68, F157, F158 and F177. Therefore, 9, 26, 28 and 33 would be promising candidates for further studies of antidiabetic activity.
Collapse
Affiliation(s)
- Duy Vu Nguyen
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ade Danova
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Organic Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| | - Aphinya Suroengrit
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Applied Medical Virology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siwaporn Boonyasuppayakorn
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Applied Medical Virology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Bioinformatics and Computational Biology Program, Graduated School, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Biocatalyst and Sustainable Biotechnology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warinthorn Chavasiri
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Multi-Target Potential of Berberine as an Antineoplastic and Antimetastatic Agent: A Special Focus on Lung Cancer Treatment. Cells 2022; 11:cells11213433. [PMID: 36359829 PMCID: PMC9655513 DOI: 10.3390/cells11213433] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Despite therapeutic advancements, lung cancer remains the principal cause of cancer mortality in a global scenario. The increased incidence of tumor reoccurrence and progression and the highly metastatic nature of lung cancer are of great concern and hence require the investigation of novel therapies and/or medications. Naturally occurring compounds from plants serve as important resources for novel drugs for cancer therapy. Amongst these phytochemicals, Berberine, an alkaloid, has been extensively explored as a potential natural anticancer therapeutic agent. Several studies have shown the effectiveness of Berberine in inhibiting cancer growth and progression mediated via several different mechanisms, which include cell cycle arrest, inducing cell death by apoptosis and autophagy, inhibiting cell proliferation and invasion, as well as regulating the expression of microRNA, telomerase activity, and the tumor microenvironment, which usually varies for different cancer types. In this review, we aim to provide a better understanding of molecular insights of Berberine and its various derivative-induced antiproliferative and antimetastatic effects against lung cancer. In conclusion, the Berberine imparts its anticancer efficacy against lung cancers via modulation of several signaling pathways involved in cancer cell viability and proliferation, as well as migration, invasion, and metastasis.
Collapse
|
5
|
Shen CH, Wu JY, Wang SC, Wang CH, Hong CT, Liu PY, Wu SR, Liu YW. The suppressive role of phytochemical-induced glutathione S-transferase Mu 2 in human urothelial carcinoma cells. Biomed Pharmacother 2022; 151:113102. [PMID: 35594716 DOI: 10.1016/j.biopha.2022.113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Glutathione S-transferases (GSTs) belong to one class of phase 2 detoxification enzymes which are important in metabolism and/or detoxification of various electrophilic endogenous metabolites and xenobiotics. From the available database, we found that GSTM2 gene expression is lower in high stages of bladder urothelial carcinoma than in stage 1 and normal bladder tissue. GSTM2 overexpression retards invasion, migration and tumor sphere formation of bladder cancer cells. Analysis of GSTM2 promoter activity shows that one SP1 site located at - 48 to - 40 bp is important for GSTM2 gene expression in BFTC 905 cells. An SP1 inhibitor, mithramycin A, inhibits GSTM2 promoter activity and protein expression. SP1 overexpression also increases GSTM2 expression in BFTC 905 and 5637 cells. Eight potential phytochemicals were analyzed for GSTM2 promoter activation, and results indicated that baicalein, berberrubine, chalcone, curcumin, resveratrol, and wogonin can increase promoter activity. In endogenous GSTM2 expression, berberrubine and resveratrol activated GSTM2 mRNA and protein expression the most. A DNA methylation inhibitor, 5-aza-deoxycytidine, can decrease GSTM2 gene methylation level and then increase its gene expression; 50 μM berberrubine decreased the GSTM2 gene methylation level, providing a mechanism for activating GSTM2 gene expression. Berberrubine and resveratrol also increased SP1 protein expression as one of the mechanisms for GSTM2 gene expression. In summary, berberrubine and resveratrol activates GSTM2 expression which inhibits cell proliferation, migration, and invasion of bladder cancer cells. The GSTM2 expression mechanism is partially via SP1 activation, and the effect of berberrubine is also partly via DNA CpG demethylation.
Collapse
Affiliation(s)
- Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Shou-Chieh Wang
- Division of Nephrology, Department of Internal Medicine, Kuang Tien General Hospital, Taichung 437, Taiwan
| | - Chi-Hung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Chen-Tai Hong
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Pei-Yu Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Sin-Rong Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan.
| |
Collapse
|
6
|
Chang JM, Wu JY, Chen SH, Chao WY, Chuang HH, Kam KH, Zhao PW, Li YZ, Yen YP, Lee YR. 9-O-Terpenyl-Substituted Berberrubine Derivatives Suppress Tumor Migration and Increase Anti-Human Non-Small-Cell Lung Cancer Activity. Int J Mol Sci 2021; 22:ijms22189864. [PMID: 34576028 PMCID: PMC8469690 DOI: 10.3390/ijms22189864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is one of the most common cancers and the leading cause of death in humans worldwide. Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases and is often diagnosed at a late stage. Among patients with NSCLC, 50% die within 1 year after diagnosis. Even with clinical intervention, the 5-year survival rate is only approximately 20%. Therefore, the development of an advanced therapeutic strategy or novel agent is urgently required for treating NSCLC. Berberine exerts therapeutic activity toward NSCLC; therefore, its activity as an antitumor agent needs to be explored further. In this study, three terpenylated-bromide derivatives of berberrubine were synthesized and their anti-NSCLC activities were evaluated. Each derivative had higher anti-NSCLCs activity than berberrubine and berberine. Among them, 9-O-gernylberberrubine bromide (B4) and 9-O-farnesylberberrubine bromide (B5) showed greater growth inhibition, cell-cycle regulation, in vitro tumorigenesis suppression, and tumor migration reduction. In addition, some degree of apoptosis and autophagic flux blocking was noted in the cells under B4 and B5 treatments. Our study demonstrates that the berberrubine derivatives, B4 and B5, exhibit impressive anti-NSCLC activities and have potential for use as chemotherapeutic agents against NSCLC.
Collapse
Affiliation(s)
- Jia-Ming Chang
- Department of Surgery, Division of Thoracic Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (J.-M.C.); (K.-H.K.)
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan;
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Wen-Ying Chao
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 73658, Taiwan;
| | - Hsiang-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kam-Hong Kam
- Department of Surgery, Division of Thoracic Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (J.-M.C.); (K.-H.K.)
| | - Pei-Wen Zhao
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Yi-Zhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Yu-Pei Yen
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
7
|
Wang L, Kong H, Jin M, Li X, Stoika R, Lin H, Liu K. Synthesis of disaccharide modified berberine derivatives and their anti-diabetic investigation in zebrafish using a fluorescence-based technology. Org Biomol Chem 2021; 18:3563-3574. [PMID: 32347284 DOI: 10.1039/d0ob00327a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Berberine is a naturally occurring isoquinoline alkaloid and has been used as an important functional food additive in China due to its various pharmacological activities. Berberine exhibits great potential for developing anti-diabetic agents against type 2 diabetes mellitus (T2DM), as it can reduce the blood glucose level in many animal models. However, the low anti-diabetic activity and poor bioavailability of berberine (below 5%) by oral administration significantly limit its practical applications. To solve these problems, this article focuses on the structural modification of berberine using some disaccharide groups, because the carbohydrate moiety has been proved to improve the bioavailability and enhance the receptor-binding affinity of drugs. Anti-diabetic investigation of the synthesized compounds was performed in a zebrafish model using a fluorescently labelled glucose analog 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose (2-NBDG) as a glucose tracker. The results indicated that the modification of berberine with carbohydrate groups could give derivatives with improved anti-diabetic activity, in particular the diglucose modified berberine derivative 1 which could dramatically promote the uptake of 2-NBDG in both zebrafish larvae and their eyes even at very low concentrations. Furthermore, the fluorescence-based anti-diabetic investigation method in zebrafish shows great potential for anti-diabetic drug screening.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Li DD, Yu P, Xiao W, Wang ZZ, Zhao LG. Berberine: A Promising Natural Isoquinoline Alkaloid for the Development of Hypolipidemic Drugs. Curr Top Med Chem 2021; 20:2634-2647. [PMID: 32901585 DOI: 10.2174/1568026620666200908165913] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Berberine, as a representative isoquinoline alkaloid, exhibits significant hypolipidemic activity in both animal models and clinical trials. Recently, a large number of studies on the lipid-lowering mechanism of berberine and studies for improving its hypolipidemic activity have been reported, but for the most part, they have been either incomplete or not comprehensive. In addition, there have been a few specific reviews on the lipid-reducing effect of berberine. In this paper, the physicochemical properties, the lipid-lowering mechanism, and studies of the modification of berberine all are discussed to promote the development of berberine as a lipid-lowering agent. Subsequently, this paper provides some insights into the deficiencies of berberine in the study of lipid-lowering drug, and based on the situation, some proposals are put forward.
Collapse
Affiliation(s)
- Dong-Dong Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Pan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang South Road, Lianyungang 222001, China
| | - Zhen-Zhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang South Road, Lianyungang 222001, China
| | - Lin-Guo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| |
Collapse
|
9
|
Chen L, Zhu L, Chen J, Chen W, Qian X, Yang Q. Crystal structure-guided design of berberine-based novel chitinase inhibitors. J Enzyme Inhib Med Chem 2021; 35:1937-1943. [PMID: 33167737 PMCID: PMC7655067 DOI: 10.1080/14756366.2020.1837123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Glycoside hydrolase family 18 (GH18) chitinases play an important role in various organisms ranging from bacteria to mammals. Chitinase inhibitors have potential applications as pesticides, fungicides, and anti-asthmatics. Berberine, a plant-derived isoquinoline alkaloid, was previously reported to inhibit against various GH18 chitinases with only moderate Ki values ranging between 20 and 70 μM. In this report, we present for the first time the berberine-complexed crystal structure of SmChiB, a model GH18 chitinase from the bacterium Serratia marcescens. Based on the berberine-binding mode, a hydrophobic cavity-based optimisation strategy was developed to increase their inhibitory activity. A series of berberine derivatives were designed and synthesised, and their inhibitory activities against GH18 chitinases were evaluated. The compound 4c showed 80-fold-elevated inhibitory activity against SmChiB and the human chitinase hAMCase with Ki values at the sub-micromolar level. The mechanism of improved inhibitory activities was proposed. This work provides a new strategy for developing novel chitinase inhibitors.
Collapse
Affiliation(s)
- Lei Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jinli Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
10
|
Meng Q, Zhang L, Zhu X, Teng Q. Synthesis of 9‐O‐Arylated Berberine with a Polystyrene Resin Supported Copper(II) Catalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qi Meng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Lian Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Xinhui Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Qiaoqiao Teng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| |
Collapse
|
11
|
Jin M, Ji X, Stoika R, Liu K, Wang L, Song Y. Synthesis of a novel fluorescent berberine derivative convenient for its subcellular localization study. Bioorg Chem 2020; 101:104021. [DOI: 10.1016/j.bioorg.2020.104021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/21/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022]
|
12
|
Dechloromethylation of the berberine to berberrubine — tricks to obtain pure product. ACTA CHIMICA SLOVACA 2020. [DOI: 10.2478/acs-2020-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Berberine (1), as a compound with interesting biological activities, can be modified at various positions to obtain more potent substances. Modifications at position 9 are based on demethylation with simultaneous dechloration resulting in berberrubine. The most frequent process is thermal dechloromethylation and this work describes this method with detailed tricks to obtain almost pure product in high yield.
Collapse
|
13
|
Berberine Derivatives Suppress Cellular Proliferation and Tumorigenesis In Vitro in Human Non-Small-Cell Lung Cancer Cells. Int J Mol Sci 2020; 21:ijms21124218. [PMID: 32545770 PMCID: PMC7352437 DOI: 10.3390/ijms21124218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of death in the world, and the most common type of lung cancer is non-small-cell lung cancer (NSCLC), accounting for 85% of lung cancer. Patients with NSCLC, when detected, are mostly in a metastatic stage, and over half of patients diagnosed with NSCLC die within one year after diagnosis; the 5-year survival rate is 24%. However, in patients with metastatic NSCLC, the 5-year survival rate is 6%. Therefore, development of a new therapeutic agent or strategy is urgent for NSCLCs. Berberine has been illustrated to be a therapeutic agent of NSCLC. In the present study, we synthesized six derivatives of berberine, and the anti-NSCLC activity of these agents was examined. Some of them exert increasing proliferation inhibition comparing with berberine. Further studies demonstrated that two of the most effective agents, 9-O-decylberberrubine bromide (B6) and 9-O-dodecylberberrubine bromide (B7), performed cell cycle regulation, in-vitro tumorigenesis inhibition and autophagic flux blocking, but not induction of cellular apoptosis in NSCLC cells. Moreover, B6 and B7 were determined to be green fluorescent and could be penetrated and localized in cellular mitochondria. Herein, B6 and B7, the berberine derivatives we synthesized, revealed better anti-NSCLC activity with berberine and may be used as therapeutic candidates for the treatment of NSCLCs.
Collapse
|
14
|
Ghaffarzadegan R, Khoee S, Rezazadeh S. Fabrication, characterization and optimization of berberine-loaded PLA nanoparticles using coaxial electrospray for sustained drug release. ACTA ACUST UNITED AC 2020; 28:237-252. [PMID: 32307652 DOI: 10.1007/s40199-020-00335-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Berberine (BBR) broadly found in medicinal plants has a major application in pharmacological therapy as an anticancer drug. Clinical applications of this promising natural drug are limited due to its poor water solubility and low bioavailability. OBJECTIVE In this study, for the first time, we synthesized core-shell BBR-loaded PLA nanoparticles (NPBs) by using coaxial electrospray (CES) to solve the poor bioavailability of BBR. METHODS Three-factor (feeding rate, polymeric solution concentration and applied voltage), three-level, Box-Behnken design was used for optimization of the size and particle size distribution of the prepared NPBs. RESULTS Based on the results of response surface methodology, the NPBs with the mean size of 265 nm and particle size distribution of 43 nm were synthesized. A TEM image was used to well illustrate the core-shell structure of the NPBs. Encapsulation efficiency and BBR loading capacity for the optimized NPBs were determined at about 81% and 7.5%, respectively. Release of NPBs was examined at pH 7.4 and 5.8. NPBs had a slower release profile than free BBR in both pH values, and the rate of BBR release was more and faster in acidic pH than in physiological one. Effects of the NPBs on the drug release were confirmed by data fitting with six kinetic models. NPBs showed an increased cytotoxic efficacy against HCT116 cells (IC50 = 56 μM), while NIH3T3 cells, non-neoplastic fibroblast cells, (IC50 > 150 μM) were less affected by NPBs. Flow cytometry demonstrated that the cellular uptake of NPBs were higher than BBR at different concentrations. CONCLUSIONS A new approach was developed in this study to prepare NPBs using the CES process for improving the efficiency and controlled BBR release. It is concluded that nano-scaled NPBs prepared by CES can improve toxicity and chemotherapeutic properties of BBR against cancerous cells. We believe that these NPBs can exhibit further potential in cancer drug delivery systems. Graphical abstract.
Collapse
Affiliation(s)
- Reza Ghaffarzadegan
- School of Chemistry, Alborz Campus, University of Tehran, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran.
| | - Shamsali Rezazadeh
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| |
Collapse
|
15
|
Habtemariam S. Recent Advances in Berberine Inspired Anticancer Approaches: From Drug Combination to Novel Formulation Technology and Derivatization. Molecules 2020; 25:molecules25061426. [PMID: 32245062 PMCID: PMC7144379 DOI: 10.3390/molecules25061426] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/01/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Berberine is multifunctional natural product with potential to treat diverse pathological conditions. Its broad-spectrum anticancer effect through direct effect on cancer cell growth and metastasis have been established both in vitro and in vivo. The cellular targets that account to the anticancer effect of berberine are incredibly large and range from kinases (protein kinase B (Akt), mitogen activated protein kinases (MAPKs), cell cycle checkpoint kinases, etc.) and transcription factors to genes and protein regulators of cell survival, motility and death. The direct effect of berberine in cancer cells is however relatively weak and occur at moderate concentration range (10–100 µM) in most cancer cells. The poor pharmacokinetics profile resulting from poor absorption, efflux by permeability-glycoprotein (P-gc) and extensive metabolism in intestinal and hepatic cells are other dimensions of berberine’s limitation as anticancer agent. This communication addresses the research efforts during the last two decades that were devoted to enhancing the anticancer potential of berberine. Strategies highlighted include using berberine in combination with other chemotherapeutic agents either to reduce toxic side effects or enhance their anticancer effects; the various novel formulation approaches which by order of magnitude improved the pharmacokinetics of berberine; and semisynthetic approaches that enhanced potency by up to 100-fold.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, ME4 4TB Kent, UK
| |
Collapse
|
16
|
Synthesis and In Vitro Photocytotoxicity of 9-/13-Lipophilic Substituted Berberine Derivatives as Potential Anticancer Agents. Molecules 2020; 25:molecules25030677. [PMID: 32033326 PMCID: PMC7036939 DOI: 10.3390/molecules25030677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to synthesize the 9-/13-position substituted berberine derivatives and evaluate their cytotoxic and photocytotoxic effects against three human cancer cell lines. Among all the synthesized compounds, 9-O-dodecyl- (5e), 13-dodecyl- (6e), and 13-O-dodecyl-berberine (7e) exhibited stronger growth inhibition against three human cancer cell lines, (HepG2, HT-29 and BFTC905), in comparison with structurally related berberine (1). These three compounds also showed the photocytotoxicity in human cancer cells in a concentration-dependent and light dose-dependent manner. Through flow cytometry analysis, we found out a lipophilic group at the 9-/13-position of berberine may have facilitated its penetration into test cells and hence enhanced its photocytotoxicity on the human liver cancer cell HepG2. Further, in cell cycle analysis, 5e, 6e, and 7e induced HepG2 cells to arrest at the S phase and caused apoptosis upon irradiation. In addition, photodynamic treatment of berberine derivatives 5e, 6e, and 7e again showed a significant photocytotoxic effects on HepG2 cells, induced remarkable cell apoptosis, greatly increased intracellular ROS level, and the loss of mitochondrial membrane potential. These results over and again confirmed that berberine derivatives 5e, 6e, and 7e greatly enhanced photocytotoxicity. Taken together, the test data led us to conclude that berberine derivatives with a dodecyl group at the 9-/13-position could be great candidates for the anti-liver cancer medicines developments.
Collapse
|
17
|
Zhang C, Sheng J, Li G, Zhao L, Wang Y, Yang W, Yao X, Sun L, Zhang Z, Cui R. Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology Review. Front Pharmacol 2020; 10:1461. [PMID: 32009943 PMCID: PMC6974675 DOI: 10.3389/fphar.2019.01461] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have shown that berberine and its derivatives demonstrate important anti-tumor effects. However, the specific underlying mechanism remains unclear. Therefore, based on systems pharmacology, this review summarizes the information available on the anti-tumor effects and mechanism of berberine and its derivatives. The action and potential mechanism of action of berberine and its derivatives when used in the treatment of complex cancers are systematically examined at the molecular, cellular, and organismic levels. It is concluded that, with further in-depth investigations on their toxicity and efficacy, berberine and its derivatives have the potential for use as drugs in cancer therapy, offering improved clinical efficacy and safety.
Collapse
Affiliation(s)
- Chaohe Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Lihong Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Lihuan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Zhuo Zhang
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Anti-Inflammation Associated Protective Mechanism of Berberine and its Derivatives on Attenuating Pentylenetetrazole-Induced Seizures in Zebrafish. J Neuroimmune Pharmacol 2020; 15:309-325. [DOI: 10.1007/s11481-019-09902-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
|
19
|
Wang L, Yang X, Li X, Stoika R, Wang X, Lin H, Ma Y, Wang R, Liu K. Synthesis of hydrophobically modified berberine derivatives with high anticancer activity through modulation of the MAPK pathway. NEW J CHEM 2020. [DOI: 10.1039/d0nj01645d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Linoleic acid-modified berberine derivative induces apoptosis of A549 cells and affects the expression of proteins associated with the MAPK pathway.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis
- Institute of Cell Biology
- National Academy of Sciences of Ukraine
- Lviv
- Ukraine
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Houwen Lin
- Research Center for Marine Drugs
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yukui Ma
- Shandong Provincial Key Laboratory of Chemical Drugs
- Shandong Academy of Pharmaceutical Sciences
- 250101 Jinan
- China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| |
Collapse
|
20
|
Wang ZC, Wang J, Chen H, Tang J, Bian AW, Liu T, Yu LF, Yi Z, Yang F. Synthesis and anticancer activity of novel 9,13-disubstituted berberine derivatives. Bioorg Med Chem Lett 2020; 30:126821. [DOI: 10.1016/j.bmcl.2019.126821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/16/2019] [Accepted: 11/10/2019] [Indexed: 12/14/2022]
|
21
|
Teng Q, Zhu X, Guo Q, Jiang W, Liu J, Meng Q. Synthesis of 9-O-arylated berberines via copper-catalyzed C Ar-O coupling reactions. Beilstein J Org Chem 2019; 15:1575-1580. [PMID: 31435439 PMCID: PMC6664384 DOI: 10.3762/bjoc.15.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/03/2019] [Indexed: 01/17/2023] Open
Abstract
Berberine is a widely used antimicrobial agent in clinic. However, a high dosage is often required due to its low lipophilicity and bioavailability. The current study explores the structural modifications of berberines with potentially lipophilic aryl groups to address this problem. A series of 15 9-O-aryl-substituted berberines (3a–o) and one 9-O-phenylene-bridged berberine dimer (5) was synthesized by copper-catalyzed cross-coupling of tetrahydroberberrubine and aryl iodides, followed by oxidation with I2.
Collapse
Affiliation(s)
- Qiaoqiao Teng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xinhui Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qianqian Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Weihua Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiang Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qi Meng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
22
|
Milata V, Svedova A, Barbierikova Z, Holubkova E, Cipakova I, Cholujova D, Jakubikova J, Panik M, Jantova S, Brezova V, Cipak L. Synthesis and Anticancer Activity of Novel 9- O-Substituted Berberine Derivatives. Int J Mol Sci 2019; 20:ijms20092169. [PMID: 31052469 PMCID: PMC6539820 DOI: 10.3390/ijms20092169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/05/2023] Open
Abstract
Berberine is a bioactive isoquinoline alkaloid derived from many plants. Although berberine has been shown to inhibit growth and induce apoptosis of several tumor cell lines, its poor absorption and moderate activity hamper its full therapeutic potential. Here, we describe the synthesis of a series of 9-O-substituted berberine derivatives with improved antiproliferative and apoptosis-inducing activities. An analysis of novel berberine derivatives by EPR spectroscopy confirmed their similar photosensitivity and analogous behavior upon UVA irradiation as berberine, supporting their potential to generate ROS. Improved antitumor activity of novel berberine derivatives was revealed by MTT assay, by flow cytometry and by detection of apoptotic DNA fragmentation and caspase-3 activation, respectively. We showed that novel berberine derivatives are potent inhibitors of growth of HeLa and HL-60 tumor cell lines with IC50 values ranging from 0.7 to 16.7 µM for HL-60 cells and 36 to >200 µM for HeLa cells after 48 h treatment. Further cell cycle analysis showed that the observed inhibition of growth of HL-60 cells treated with berberine derivatives was due to arresting these cells in the G2/M and S phases. Most strikingly, we found that berberine derivative 3 (9-(3-bromopropoxy)-10-methoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquino[3,2-a] isoquinolin-7-ylium bromide) possesses 30-fold superior antiproliferative activity with an IC50 value of 0.7 µM and 6-fold higher apoptosis-inducing activity in HL-60 leukemia cells compared to berberine. Therefore, further studies are merited of the antitumor activity in leukemia cells of this berberine derivative.
Collapse
Affiliation(s)
- Viktor Milata
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Alexandra Svedova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Zuzana Barbierikova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Eva Holubkova
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Dana Cholujova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Jana Jakubikova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Miroslav Panik
- Institute of Management, Slovak University of Technology, 812 33 Bratislava, Slovakia.
| | - Sona Jantova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Vlasta Brezova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| |
Collapse
|
23
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
24
|
Novel berberine derivatives: Design, synthesis, antimicrobial effects, and molecular docking studies. Chin J Nat Med 2018; 16:774-781. [PMID: 30322611 DOI: 10.1016/s1875-5364(18)30117-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 01/07/2023]
Abstract
A series of berberine derivatives were synthesized by introducing substituted benzyl groups at C-9. All these synthesized compounds (4a-4m) were screened for their in vitro antibacterial activity against four Gram-positive bacteria and four Gram-negative bacteria and evaluated for their antifungal activity against three pathogenic fungal strains. All these compounds displayed good antibacterial and antifungal activities, compared to reference drugs including Ciprofloxacin and Fluconazole; Compounds 4f, 4g, and 4l showed the highest antibacterial and antifungal activities. Moreover, all the synthesized compounds were docked into topoisomerase II-DNA complex, which is a crucial drug target for the treatment of microbial infections. Docking results showed that H-bond, π-π stacked, π-cationic, and π-anionic interactions were responsible for the strong binding of the compounds with the target protein-DNA complex.
Collapse
|
25
|
Synthesis, characterization and in vitro biological evaluation of two matrine derivatives. Sci Rep 2018; 8:15686. [PMID: 30356148 PMCID: PMC6200782 DOI: 10.1038/s41598-018-33908-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/07/2018] [Indexed: 12/29/2022] Open
Abstract
Matrine is a traditional Chinese medicine and botanical pesticide with broad biological activities, including pharmacological and agricultural activities. In present work, two matrine derivatives have been successfully synthesized via introducing indole and cyclohexylamino to 13 position of matrine, respectively, with sophocarpine as starting material, and structurally characterized via infrared spectroscopy(IR), MS, 1 H NMR, 13 C NMR and X-ray crystal diffraction. The results of the in vitro biological activity tests showed that these two matrine derivatives exhibited even better activities against human cancer cells Hela229 and insect cell line Sf9 from Spodoptera frugiperda (J. E. Smith) than that of parent matrine, suggesting that the heterocyclic or cyclic group can dramatically increase the biological activity of matrine. It is worth to mention that 13-indole-matrine could possibly inhibit the growth of insect cells or human cancer cells by inducing cell apoptosis. The results of the present study provide useful information for further structural modifications of these compounds and for exploring new, potent anti-cancer agents and environment friendly pesticides.
Collapse
|
26
|
Patil MD, Grogan G, Yun H. Biocatalyzed C−C Bond Formation for the Production of Alkaloids. ChemCatChem 2018. [DOI: 10.1002/cctc.201801130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mahesh D. Patil
- Department of Systems BiotechnologyKonkuk University Seoul 143-701 Korea
| | - Gideon Grogan
- Department of ChemistryUniversity of York Heslington York, YO10 5DD UK
| | - Hyungdon Yun
- Department of Systems BiotechnologyKonkuk University Seoul 143-701 Korea
| |
Collapse
|
27
|
Solid dispersion of berberine hydrochloride and Eudragit ® S100: Formulation, physicochemical characterization and cytotoxicity evaluation. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Chen J, Wang T, Xu S, Lin A, Yao H, Xie W, Zhu Z, Xu J. Design, synthesis and biological evaluation of novel nitric oxide-donating protoberberine derivatives as antitumor agents. Eur J Med Chem 2017; 132:173-183. [DOI: 10.1016/j.ejmech.2017.03.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 01/17/2023]
|
29
|
Duan JR, Liu HB, Jeyakkumar P, Gopala L, Li S, Geng RX, Zhou CH. Design, synthesis and biological evaluation of novel Schiff base-bridged tetrahydroprotoberberine triazoles as a new type of potential antimicrobial agents. MEDCHEMCOMM 2017; 8:907-916. [PMID: 30108806 DOI: 10.1039/c6md00688d] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/16/2017] [Indexed: 01/06/2023]
Abstract
A series of novel Schiff base-bridged tetrahydroprotoberberine (THPB) triazoles were designed, synthesized and characterized for the first time. Antimicrobial assay showed that some of the prepared compounds exerted stronger antibacterial and antifungal activities than the reference drugs. Especially, THPB triazole 7a gave low MIC values of 0.5, 1 and 2 μg mL-1 against B. yeast, M. luteus and MRSA, respectively. Further experiments indicated that the highly active molecule 7a was able to rapidly kill the MRSA strain and did not trigger the development of bacterial resistance even after 14 passages. The preliminary exploration for the antimicrobial mechanism revealed that compound 7a could effectively intercalate into calf thymus DNA to form a 7a-DNA supramolecular complex, and its Zn2+ complex had the ability to directly cleave pUC19 DNA, which suggested that compound 7a might be a potentially dual-targeting antibacterial molecule. It was also found that compound 7a could be efficiently stored and carried by human serum albumin (HSA), and the hydrophobic interactions and hydrogen bonds played important roles in the transportation of HSA to the active molecule 7a.
Collapse
Affiliation(s)
- Jun-Rong Duan
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Han-Bo Liu
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Ponmani Jeyakkumar
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Shuo Li
- School of Chemical Engineering , Chongqing University of Technology , Chongqing 400054 , PR China .
| | - Rong-Xia Geng
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| |
Collapse
|
30
|
Pharmacokinetics, excretion of 8-cetylberberine and its main metabolites in rat urine. J Pharm Biomed Anal 2017; 132:195-206. [DOI: 10.1016/j.jpba.2016.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 11/23/2022]
|
31
|
Yi CM, Yu J, Kim H, Lee NR, Kim SW, Lee NJ, Lee J, Seong J, Kim NJ, Inn KS. Identification of actin as a direct proteomic target of berberine using an affinity-based chemical probe and elucidation of its modulatory role in actin assembly. Chem Commun (Camb) 2017; 53:7045-7047. [DOI: 10.1039/c7cc02789c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Actin was identified as a direct target of berberine via a chemoproteomic approach and its assembly was modulated by berberine.
Collapse
|
32
|
Synthesis and hypoglycemic activity of 9- O -(lipophilic group substituted) berberine derivatives. Bioorg Med Chem Lett 2016; 26:4799-4803. [DOI: 10.1016/j.bmcl.2016.08.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/28/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022]
|
33
|
|
34
|
Synthesis of berberine-piperazine conjugates as potential antioxidant and cytotoxic agents. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1662-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Pongkittiphan V, Chavasiri W, Supabphol R. Antioxidant Effect of Berberine and its Phenolic Derivatives Against Human Fibrosarcoma Cells. Asian Pac J Cancer Prev 2016. [PMID: 26225680 DOI: 10.7314/apjcp.2015.16.13.5371] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Berberine (B1), isolated from stems of Coscinium fenestratum (Goetgh.) Colebr, was used as a principle structure to synthesize three phenolic derivatives: berberrubine (B2) with a single phenolic group, berberrubine chloride (B3) as a chloride counter ion derivative, and 2,3,9,10-tetra-hydroxyberberine chloride (B4) with four phenolic groups, to investigate their direct and indirect antioxidant activities. For DPPH assay, compounds B4, B3, and B2 showed good direct antioxidant activity (IC50 values=10.7±1.76, 55.2±2.24, and 87.4±6.65 μM, respectively) whereas the IC50 value of berberine was higher than 500 μM. Moreover, compound B4 exhibited a better DPPH scavenging activity than BHT as a standard antioxidant (IC50=72.7±7.22 μM) due to the ortho position of hydroxyl groups and its capacity to undergo intramolecular hydrogen bonding. For cytotoxicity assay against human fibrosarcoma cells (HT1080) using MTT reagent, the sequence of IC50 value at 7-day treatment stated that B1<B4<B2 (0.44±0.03, 2.88±0.23, and 6.05±0.64 μM, respectively). Berberine derivatives, B2 and B4, showed approximately the same level of CAT expression and significant up-regulation of SOD expression in a dose-dependent manner compared to berberine treatment for 7-day exposure using reverse transcription- polymerase chain reaction (RT-PCR) assays. Our findings show a better direct-antioxidant activity of the derivatives containing phenolic groups than berberine in a cell-free system. For cell-based system, berberine was able to exert better cytotoxic activity than its derivatives. Berberine derivatives containing a single and four phenolic groups showed improved up-regulation of SOD gene expression. Cytotoxic action might not be the main effect of berberine derivatives. Other pharmacological targets of these derivatives should be further investigated to confirm the medical benefit of phenolic groups introduced into the berberine molecule.
Collapse
Affiliation(s)
- Veerachai Pongkittiphan
- Natural Products Research Unit, Department of Chemistry, Chulalongkorn University, Pathumwan, Thailand E-mail :
| | | | | |
Collapse
|
36
|
Hosry LE, Boyer L, Garayev EE, Mabrouki F, Bun SS, Debrauwer L, Auezova L, Cheble E, Elias R. Chemical Composition, Antioxidant and Cytotoxic Activities of Roots and Fruits of Berberis libanotica. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fourteen compounds belonging to different chemical classes were characterized in the roots and fruits extracts from Berberis libanotica, using the same HPLC-DAD-MS method. Thirteen were reported, for the first time, from the fruits whereas the roots contained mostly alkaloids of which 3 out of 5 are reported for the first time. Their structures were established on the basis of MS data as gallic acid (1), chlorogenic acid (2), delphinidin (3), oxyacanthine (4), rutin (5), hyperoside (6), berbamine (7), isoquercitrin (8), quercitrin (9), jatrorrhizine (10), palmatine (11), berberine (12), quercetin (13) and luteolin (14). Extracts containing compounds 4 and 7 showed significant cytotoxicity against the HT29 cell line with an IC50 of 12.2–26.1 μg/mL. Fruits extracts, due mostly to compounds 1 and 2, showed potent antioxidant activities with an EC50 of 0.0025-0.019 mg/mL.
Collapse
Affiliation(s)
- Leina El Hosry
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 5, France
| | - Laurent Boyer
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 5, France
| | - Elnur E. Garayev
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 5, France
| | - Fathi Mabrouki
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 5, France
| | - Sok-Siya Bun
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 5, France
| | - Laurent Debrauwer
- INRA - UMR 1331 Toxalim, 180 Chemin de Tournefeuille 31027 Toulouse cedex 3, France
| | - Lizette Auezova
- Department of Chemistry, Faculty of Sciences II, Lebanese University, Fanar, Jdaidet el Matn, P.O. Box 90656, Lebanon
| | - Edmond Cheble
- Faculty of Pharmacy, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Riad Elias
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 5, France
| |
Collapse
|
37
|
Li DD, Dai LL, Zhang N, Tao ZW. Synthesis, structure–activity relationship and biological evaluation of novel nitrogen mustard sophoridinic acid derivatives as potential anticancer agents. Bioorg Med Chem Lett 2015; 25:4092-6. [DOI: 10.1016/j.bmcl.2015.08.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/31/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023]
|
38
|
Mistry B, Keum YS, Kim DH. Synthesis and Biological Evaluation of Berberine Derivatives Bearing 4-Aryl-1-Piperazine Moieties. JOURNAL OF CHEMICAL RESEARCH 2015. [DOI: 10.3184/174751915x14381686689721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Piperazine moieties with disubstituted N-aryl groups are linked to the isoquinoline alkaloid, berberine, through a pentyloxy side chain, replacing its 9-methoxyl group. The nine synthesised compounds are screened for antioxidant potency, in vitro anticancer activities against Hela and Caski cervical cancer cell lines and for cytotoxicity towards Malin Darby canine kidney cell lines. Several compounds demonstrate significant antioxidant potency and most of the compounds exhibit equipotent, or better, anticancer activity when compared to berberine.
Collapse
Affiliation(s)
- Bhupendra Mistry
- Organic Research Laboratory, Department of Bioresources and Food Sciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
| | - Young-Soo Keum
- Organic Research Laboratory, Department of Bioresources and Food Sciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
| | - Doo Hwan Kim
- Organic Research Laboratory, Department of Bioresources and Food Sciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
39
|
Bhowmik D, Fiorillo G, Lombardi P, Suresh Kumar G. Recognition of human telomeric G-quadruplex DNA by berberine analogs: effect of substitution at the 9 and 13 positions of the isoquinoline moiety. J Mol Recognit 2015; 28:722-30. [DOI: 10.1002/jmr.2486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/11/2015] [Accepted: 05/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| | - Gaetano Fiorillo
- Naxospharma srl; Via G. Di Vittorio 70 20026 Novate Milanese MI Italy
| | - Paolo Lombardi
- Naxospharma srl; Via G. Di Vittorio 70 20026 Novate Milanese MI Italy
| | - G. Suresh Kumar
- Biophysical Chemistry Laboratory; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| |
Collapse
|
40
|
Wang SH, Lo CY, Gwo ZH, Lin HJ, Chen LG, Kuo CD, Wu JY. Synthesis and Biological Evaluation of Lipophilic 1,4-Naphthoquinone Derivatives against Human Cancer Cell Lines. Molecules 2015; 20:11994-2015. [PMID: 26133763 PMCID: PMC6331847 DOI: 10.3390/molecules200711994] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/21/2015] [Accepted: 06/25/2015] [Indexed: 12/23/2022] Open
Abstract
To examine the effect of hydrophobicity on the anticancer activity of 1,4-naphthoquinone derivatives, a series of compounds bearing a 2-O-alkyl-, 3-C-alkyl- or 2/3-N-morpholinoalkyl group were synthesized and evaluated for their anticancer activity against five human cancer cell lines in vitro. The cytotoxicity of these derivatives was assayed against HT-29, SW480, HepG2, MCF-7 and HL-60 cells by the MTT assay. Among them, 2-hydroxy-3-farnesyl-1,4-naphthoquinone (11a) was found to be the most cytotoxic against these cell lines. Our results showed that the effectiveness of compound 11a may be attributed to its suppression of the survival of HT-29. Secondly, in the Hoechst 33258 staining test, compound 11a-treated cells exhibited nuclear condensation typical of apoptosis. Additionally, cell cycle analysis by flow cytometry indicated that compound 11a arrested HT-29 cells in the S phase. Furthermore, cell death detected by Annexin V-FITC/propidium iodide staining showed that compound 11a efficiently induced apoptosis of HT-29 in a concentration-dependent manner. Taken together, compound 11a effectively inhibits colon cancer cell proliferation and may be a potent anticancer agent.
Collapse
Affiliation(s)
- Shao-Hung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan.
| | - Chih-Yu Lo
- Department of Food Science, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan.
| | - Zhong-Heng Gwo
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan.
| | - Hong-Jhih Lin
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan.
| | - Lih-Geeng Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan.
| | - Cheng-Deng Kuo
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan.
| |
Collapse
|
41
|
Costa DS, Martino T, Magalhães FC, Justo G, Coelho MG, Barcellos JC, Moura VB, Costa PR, Sabino KC, Dias AG. Synthesis of N-methylarylnitrones derived from alkyloxybenzaldehydes and antineoplastic effect on human cancer cell lines. Bioorg Med Chem 2015; 23:2053-61. [DOI: 10.1016/j.bmc.2015.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 01/26/2023]
|
42
|
Yang F, Wang J, Tang J, Yu LF, Li J, Li JY. Berberine Analogues: Progress towards Versatile Applications. HETEROCYCLES 2015. [DOI: 10.3987/rev-15-825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Fu S, Xie Y, Tuo J, Wang Y, Zhu W, Wu S, Yan G, Hu H. Discovery of mitochondria-targeting berberine derivatives as the inhibitors of proliferation, invasion and migration against rat C6 and human U87 glioma cells. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00264d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This research aims to synthesize lipophilic berberine derivatives and evaluate their antiglioma effects on C6 and U87 cells.
Collapse
Affiliation(s)
- Shengnan Fu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
- Department of Pharmacy
| | - Yanqi Xie
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jue Tuo
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yalong Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenbo Zhu
- Department of Pharmacology
- Zhongshan School of Medicine
- Sun Yat-sen University
- Guangzhou 510080
- China
| | - Sihan Wu
- Department of Pharmacology
- Zhongshan School of Medicine
- Sun Yat-sen University
- Guangzhou 510080
- China
| | - Guangmei Yan
- Department of Pharmacology
- Zhongshan School of Medicine
- Sun Yat-sen University
- Guangzhou 510080
- China
| | - Haiyan Hu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
44
|
Wang SH, Chen CH, Lo CY, Feng JZ, Lin HJ, Chang PY, Yang LL, Chen LG, Liu YW, Kuo CD, Wu JY. Synthesis and biological evaluation of novel 7-O-lipophilic substituted baicalein derivatives as potential anticancer agents. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00163c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of lipophilic 7-O-substituted baicalein derivatives were synthesized and evaluated for their anticancer activity.
Collapse
|
45
|
Substrate scope in the direct imine acylation of ortho-substituted benzoic acid derivatives: the total synthesis (±)-cavidine. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.04.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Jin X, Yan TH, Yan L, Li Q, Wang RL, Hu ZL, Jiang YY, Sun QY, Cao YB. Design, synthesis, and anticancer activity of novel berberine derivatives prepared via CuAAC "click" chemistry as potential anticancer agents. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1047-59. [PMID: 25120353 PMCID: PMC4128789 DOI: 10.2147/dddt.s63228] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A series of novel derivatives of phenyl-substituted berberine triazolyls has been designed and synthesized via copper-catalyzed azide-alkyne cycloaddition click chemistry in an attempt to develop antitumor agents. All of the compounds were evaluated for anticancer activity against a panel of three human cancer cell lines, including MCF-7 (breast), SW-1990 (pancreatic), and SMMC-7721 (liver) and the noncancerous human umbilical vein endothelial cell (HUVEC) cell lines. The results indicated that most of the compounds displayed notable anticancer activities against the MCF-7 cells compared with berberine. Among these derivatives, compound 16 showed the most potent inhibitory activity against the SW-1990 and SMMC-7721 cell lines, with half-maximal inhibitory concentration (IC50) values of 8.54±1.97 μM and 11.87±1.83 μM, respectively. Compound 36 exhibited the most potent inhibitory activity against the MCF-7 cell line, with an IC50 value of 12.57±1.96 μM. Compound 16 and compound 36 exhibited low cytotoxicity in the HUVEC cell line, with IC50 values of 25.49±3.24 μM and 30.47±3.47 μM. Furthermore, compounds 14, 15, 16, 17, 18, 32, and 36 exhibited much better selectivity than berberine toward the normal cell line HUVEC.
Collapse
Affiliation(s)
- Xin Jin
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China ; School of Pharmacy, FuJian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Tian-Hua Yan
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lan Yan
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Qian Li
- Diakite Biological Technology Co., Ltd, Shanghai, People's Republic of China
| | - Rui-Lian Wang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Zhen-Lin Hu
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuan-Ying Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Qing-Yan Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Yong-Bing Cao
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
47
|
Jabbarzadeh Kaboli P, Rahmat A, Ismail P, Ling KH. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur J Pharmacol 2014; 740:584-95. [PMID: 24973693 DOI: 10.1016/j.ejphar.2014.06.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 01/02/2023]
Abstract
Breast cancer is the most common cancer among women worldwide and novel therapeutic agents are needed to treat this disease. The plant-based alkaloid berberine has potential therapeutic applications for breast cancer, although a better understanding of the genes and cellular pathways regulated by this compound is needed to define the mechanism of its action in cancer treatment. In this review, the molecular targets of berberine in various cancers, particularly breast cancer, are discussed. Berberine was shown to be effective in inhibiting cell proliferation and promoting apoptosis in various cancerous cells. Some signaling pathways affected by berberine, including the MAP (mitogen-activated protein) kinase and Wnt/β-catenin pathways, are critical for reducing cellular migration and sensitivity to various growth factors. This review will discuss recent studies and consider the application of new prospective approaches based on microRNAs and other crucial regulators for use in future studies to define the action of berberine in cancer. The effects of berberine on cancer cell survival and proliferation are also outlined.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Asmah Rahmat
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Patimah Ismail
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
48
|
Multiple effects of berberine derivatives on colon cancer cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:924585. [PMID: 25045712 PMCID: PMC4086420 DOI: 10.1155/2014/924585] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 01/21/2023]
Abstract
The pharmacological use of the plant alkaloid berberine is based on its antibacterial and anti-inflammatory properties; recently, anticancer activity has been attributed to this compound. To exploit this interesting feature, we synthesized three berberine derivatives, namely, NAX012, NAX014, and NAX018, and we tested their effects on two human colon carcinoma cell lines, that is, HCT116 and SW613-B3, which are characterized by wt and mutated p53, respectively. We observed that cell proliferation is more affected by cell treatment with the derivatives than with the lead compound; moreover, the derivatives proved to induce cell cycle arrest and cell death through apoptosis, thus suggesting that they could be promising anticancer drugs. Finally, we detected typical signs of autophagy in cells treated with berberine derivatives.
Collapse
|
49
|
Interaction of 9-O-N-aryl/arylalkyl amino carbonyl methyl berberine analogs with single stranded ribonucleotides. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 134:64-74. [PMID: 24792476 DOI: 10.1016/j.jphotobiol.2014.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/27/2014] [Accepted: 03/31/2014] [Indexed: 12/20/2022]
Abstract
Studies on the molecular aspects of alkaloid-RNA complexation are of prime importance for the development of rational RNA targeted drug design strategies. Towards this goal, the binding aspects of three novel 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs to four single stranded ribonucleotides, poly(G), poly(I), poly(C) and poly(U), were studied for the first time employing multifaceted biophysical tools. Absorbance and fluorescence studies revealed that these analogs bound non-cooperatively to poly(G) and poly(I) with binding affinities remarkably higher than berberine. The binding of these analogs to poly(U) and poly(C) was weaker in comparison to poly(G) and poly(I) but were one order higher in comparison to berberine. Quantum efficiency values revealed that energy transfer occurred from the RNA bases to the analogs upon complexation. The binding was dominated by large positive entropic contributions and small but favorable enthalpic contributions. Salt dependent studies established that the binding was dominated by hydrophobic forces that contributed around 90% of the total standard molar Gibbs energy. The chain length of the substitution at the 9-position was found to be critical in modulating the binding affinities. These results provide new insights into the binding efficacy of these novel berberine analogs to single stranded RNA sequences.
Collapse
|
50
|
Bhowmik D, Buzzetti F, Fiorillo G, Lombardi P, Suresh Kumar G. Spectroscopic studies on the binding interaction of novel 13-phenylalkyl analogs of the natural alkaloid berberine to nucleic acid triplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 120:257-264. [PMID: 24184628 DOI: 10.1016/j.saa.2013.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/13/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
In this study we have characterized the capability of six 13-phenylalkyl analogs of berberine to stabilize nucleic acid triplex structures, poly(rA)⋅2poly(rU) and poly(dA)⋅2poly(dT). Berberine analogs bind to the RNA and DNA triplexes non-cooperatively. As the chain length of the substitution increased beyond CH2, the affinity enhanced up to critical length of (CH2)4, there after which the binding affinity decreased for both the triplexes. A remarkably stronger intercalative binding of the analogs compared to berberine to the triplexes was confirmed from ferrocyanide fluorescence quenching, fluorescence polarization and viscosity results. Circular dichroism results had indicated strong conformational changes in the triplexes on binding of the analogs. The analogs enhanced the stability of the Hoogsteen base paired third strand of both the triplexes while no significant change in the high-temperature duplex-to-single strand transitions was observed. Energetics of the interaction revealed that as the alkyl chain length increased, the binding was more entropy driven. This study demonstrates that phenylalkyl substitution at the 13-position of berberine increased the triplex binding affinity of berberine but a threshold length of the side chain is critical for the strong intercalative binding to occur.
Collapse
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Franco Buzzetti
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Gaetano Fiorillo
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Paolo Lombardi
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|