1
|
Poyraz S, Döndaş HA, Sansano JM, Belveren S, Yamali C, Ülger M, Döndaş NY, Sağlık BN, Pask CM. N-Benzoylthiourea-pyrrolidine carboxylic acid derivatives bearing an imidazole moiety: Synthesis, characterization, crystal structure, in vitro ChEs inhibition, and antituberculosis, antibacterial, antifungal studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, Kaldhi D, Singh V, Gupta S, Malakar CC. Overview on Biological Activities of Pyrazole Derivatives. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:229-306. [DOI: 10.1007/978-981-16-8399-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Salem MS, Al-Mabrook SAM, El-Hashash MAEM. Design, Synthesis and Antiproliferative Activity of Novel Heterocycles from 6-Iodo-2-phenyl-4H-benzo[d][1,3]thiazine-4-thione. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1847287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Marwa S. Salem
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasiya, Egypt
| | - Selima A. M. Al-Mabrook
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasiya, Egypt
- Faculty of science, Alasmarya Islamic University, Zliten, Libya
| | | |
Collapse
|
4
|
Nieto A, Fernández-Vega V, Spicer TP, Sturchler E, Adhikari P, Kennedy N, Mandat S, Chase P, Scampavia L, Bannister T, Hodder P, McDonald PH. Identification of Novel, Structurally Diverse, Small Molecule Modulators of GPR119. Assay Drug Dev Technol 2019; 16:278-288. [PMID: 30019946 DOI: 10.1089/adt.2018.849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
GPR119 drug discovery efforts in the pharmaceutical industry for the treatment of type 2 diabetes mellitus (T2DM) and obesity, were initiated based on its restricted distribution in pancreas and GI tract, and its possible role in glucose homeostasis. While a number of lead series have emerged, the pharmacological endpoints they provide have not been clear. In particular, many lead series have demonstrated loss of efficacy and significant toxic side effects. Thus, we sought to identify novel, potent, positive modulators of GPR119. In this study, we have successfully developed and optimized a high-throughput screening strategy to identify GPR119 modulators using a live cell assay format that utilizes a cyclic nucleotide-gated channel as a biosensor for cAMP production. Our high-throughput screening (HTS) approach is unique to that of previous HTS approaches targeting this receptor, as changes in cAMP were measured both in the presence and absence of an EC10 of the endogenous ligand, oleoylethanolamide, enabling detection of both agonists and potential allosteric modulators in a single assay. From these efforts, we have identified positive modulators of GPR119 with similar as well as unique scaffolds compared to existing compounds and similar as well as unique signaling properties. Our compounds will not only serve as novel molecular probes to better understand GPR119 pleiotropic signaling and the underlying physiological consequences of receptor activation, but are also well-suited for translation as potential therapeutic agents.
Collapse
Affiliation(s)
- Ainhoa Nieto
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | | | - Timothy P Spicer
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Emmanuel Sturchler
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Pramisha Adhikari
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Nicole Kennedy
- 2 Department of Chemistry, The Scripps Research Institute , Jupiter, Florida
| | - Sean Mandat
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Peter Chase
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Louis Scampavia
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Thomas Bannister
- 2 Department of Chemistry, The Scripps Research Institute , Jupiter, Florida
| | - Peter Hodder
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Patricia H McDonald
- 1 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| |
Collapse
|
5
|
de Sena M. Pinheiro P, Rodrigues DA, do Couto Maia R, Thota S, Fraga CA. The Use of Conformational Restriction in Medicinal Chemistry. Curr Top Med Chem 2019; 19:1712-1733. [DOI: 10.2174/1568026619666190712205025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
During the early preclinical phase, from hit identification and optimization to a lead compound,
several medicinal chemistry strategies can be used to improve potency and/or selectivity. The
conformational restriction is one of these approaches. It consists of introducing some specific structural
constraints in a lead candidate to reduce the overall number of possible conformations in order to favor
the adoption of a bioactive conformation and, as a consequence, molecular recognition by the target receptor.
In this work, we focused on the application of the conformational restriction strategy in the last
five years for the optimization of hits and/or leads of several important classes of therapeutic targets in
the drug discovery field. Thus, we recognize the importance of several kinase inhibitors to the current
landscape of drug development for cancer therapy and the use of G-protein Coupled Receptor (GPCR)
modulators. Several other targets are also highlighted, such as the class of epigenetic drugs. Therefore,
the possibility of exploiting conformational restriction as a tool to increase the potency and selectivity
and promote changes in the intrinsic activity of some ligands intended to act on many different targets
makes this strategy of structural modification valuable for the discovery of novel drug candidates.
Collapse
Affiliation(s)
- Pedro de Sena M. Pinheiro
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Daniel A. Rodrigues
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Rodolfo do Couto Maia
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Sreekanth Thota
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Carlos A.M. Fraga
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Koshizawa T, Morimoto T, Watanabe G, Fukuda T, Yamasaki N, Hagita S, Sawada Y, Okuda A, Shibuya K, Ohgiya T. Discovery of novel spiro[chromane-2,4′-piperidine] derivatives as potent and orally bioavailable G-protein-coupled receptor 119 agonists. Bioorg Med Chem Lett 2018; 28:3236-3241. [DOI: 10.1016/j.bmcl.2018.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 01/30/2023]
|
7
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
8
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
9
|
Synthesis, characterization, crystal structure, and antituberculosis activity of some novel polysubstituted aminocarbothiol/thiohydantoin-pyrrolidine derivatives. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2039-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Koshizawa T, Morimoto T, Watanabe G, Watanabe T, Yamasaki N, Sawada Y, Fukuda T, Okuda A, Shibuya K, Ohgiya T. Optimization of a novel series of potent and orally bioavailable GPR119 agonists. Bioorg Med Chem Lett 2017. [DOI: 10.1016/j.bmcl.2017.06.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Hassing HA, Engelstoft MS, Sichlau RM, Madsen AN, Rehfeld JF, Pedersen J, Jones RM, Holst JJ, Schwartz TW, Rosenkilde MM, Hansen HS. Oral 2-oleyl glyceryl ether improves glucose tolerance in mice through the GPR119 receptor. Biofactors 2016; 42:665-673. [PMID: 27297962 DOI: 10.1002/biof.1303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 05/01/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
Abstract
The intestinal G protein-coupled receptor GPR119 is a novel metabolic target involving glucagon-like peptide-1 (GLP-1)-derived insulin-regulated glucose homeostasis. Endogenous and diet-derived lipids, including N-acylethanolamines and 2-monoacylglycerols (2-MAG) activate GPR119. The purpose of this work is to evaluate whether 2-oleoyl glycerol (2-OG) improves glucose tolerance through GPR119, using wild type (WT) and GPR 119 knock out (KO) mice. We here show that GPR119 is essential for 2-OG-mediated release of GLP-1 and CCK from GLUTag cells, since a GPR119 specific antagonist completely abolished the hormone release. Similarly, in isolated primary colonic crypt cultures from WT mice, GPR119 was required for 2-OG-stimulated GLP-1 release while there was no response in crypts from KO mice. In vivo, gavage with 2-oleyl glyceryl ether ((2-OG ether), a stable 2-OG analog with a potency of 5.3 µM for GPR119 with respect to cAMP formation as compared to 2.3 µM for 2-OG), significantly (P < 0.05) improved glucose clearance in WT littermates, but not in GPR119 KO mice. Finally, deletion of GPR119 in mice resulted in lower glucagon levels, whereas the levels of insulin and GIP were unchanged. In the present study we show that 2-OG stimulates GLP-1 secretion through GPR119 activation in vitro, and that fat-derived 2-MAGs are potent candidates for mediating fat-induced GLP-1 release through GPR119 in vivo. © 2016 BioFactors, 42(6):665-673, 2016.
Collapse
Affiliation(s)
- H A Hassing
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - M S Engelstoft
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Metabolic Research, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - R M Sichlau
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Metabolic Research, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - A N Madsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - J F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej, Copenhagen, Denmark
| | - J Pedersen
- Department of Biomedical Science, Endocrinology Research Section, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - R M Jones
- Arena Pharmaceutical Inc, San Diego, CA, 92121, USA
| | - J J Holst
- Department of Biomedical Science, Endocrinology Research Section, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Section for Translational Physiology, Novo Nordisk Foundation Center for Metabolic Research, Panum Institute, Blegdamsvej 3, Copenhagen, Denmark
| | - T W Schwartz
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Metabolic Research, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - M M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - H S Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| |
Collapse
|
12
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
13
|
Matsuda D, Kobashi Y, Mikami A, Kawamura M, Shiozawa F, Kawabe K, Hamada M, Oda K, Nishimoto S, Kimura K, Miyoshi M, Takayama N, Kakinuma H, Ohtake N. Design and synthesis of 1H-pyrazolo[3,4-c]pyridine derivatives as a novel structural class of potent GPR119 agonists. Bioorg Med Chem Lett 2016; 26:3441-6. [DOI: 10.1016/j.bmcl.2016.06.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/14/2016] [Accepted: 06/18/2016] [Indexed: 11/28/2022]
|
14
|
Measurement, Interpretation and Use of Free Ligand Solution Conformations in Drug Discovery. PROGRESS IN MEDICINAL CHEMISTRY 2016; 55:45-147. [DOI: 10.1016/bs.pmch.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Ritter K, Buning C, Halland N, Pöverlein C, Schwink L. G Protein-Coupled Receptor 119 (GPR119) Agonists for the Treatment of Diabetes: Recent Progress and Prevailing Challenges. J Med Chem 2015; 59:3579-92. [PMID: 26512410 DOI: 10.1021/acs.jmedchem.5b01198] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this Perspective, recent advances and challenges in the development of GPR119 agonists as new oral antidiabetic drugs will be discussed. Such agonists are expected to exhibit a low risk to induce hypoglycemia as well as to have a beneficial impact on body weight. Many pharmaceutical companies have been active in the search for GPR119 agonists, making it a highly competitive area in the industrial environment. Several GPR119 agonists have been entered into clinical studies, but many have failed either in phase I or II and none has progressed beyond phase II. Herein we describe the strategies chosen by the different medicinal chemistry teams in academia and the pharmaceutical industry to improve potency, physicochemical properties, pharmacokinetics, and the safety profile of GPR119 agonists in the discovery phase in order to improve the odds for successful development.
Collapse
Affiliation(s)
- Kurt Ritter
- Sanofi-Aventis Deutschland GmbH , Building G838, Industriepark Hoechst, 65926 Frankfurt, Germany
| | - Christian Buning
- Sanofi-Aventis Deutschland GmbH , Building G838, Industriepark Hoechst, 65926 Frankfurt, Germany
| | - Nis Halland
- Sanofi-Aventis Deutschland GmbH , Building G838, Industriepark Hoechst, 65926 Frankfurt, Germany
| | - Christoph Pöverlein
- Sanofi-Aventis Deutschland GmbH , Building G838, Industriepark Hoechst, 65926 Frankfurt, Germany
| | - Lothar Schwink
- Sanofi-Aventis Deutschland GmbH , Building G838, Industriepark Hoechst, 65926 Frankfurt, Germany
| |
Collapse
|
16
|
Regioselective synthesis of pyrazoles fused with heteroaliphatic amines at the [3,4-c] edges. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Scott JS, Bowker SS, Brocklehurst KJ, Brown HS, Clarke DS, Easter A, Ertan A, Goldberg K, Hudson JA, Kavanagh S, Laber D, Leach AG, MacFaul PA, Martin EA, McKerrecher D, Schofield P, Svensson PH, Teague J. Circumventing Seizure Activity in a Series of G Protein Coupled Receptor 119 (GPR119) Agonists. J Med Chem 2014; 57:8984-98. [DOI: 10.1021/jm5011012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- James S. Scott
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Suzanne S. Bowker
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Katy J. Brocklehurst
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Hayley S. Brown
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - David S. Clarke
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Alison Easter
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Anne Ertan
- Pharmaceutical Development, AstraZeneca R&D, S-151 85 Södertälje, Sweden
| | - Kristin Goldberg
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Julian A. Hudson
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Stefan Kavanagh
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - David Laber
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Andrew G. Leach
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Philip A. MacFaul
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Elizabeth A. Martin
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Darren McKerrecher
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Paul Schofield
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Per H. Svensson
- Pharmaceutical Development, AstraZeneca R&D, S-151 85 Södertälje, Sweden
| | - Joanne Teague
- Innovative
Medicines Unit, AstraZeneca Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| |
Collapse
|
18
|
Batchu H, Batra S. Synthesis of dihydropyrazolo[4,3-c]azepines via iodine-mediated intramolecular hydrative cyclization. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.09.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Ye XY, Morales CL, Wang Y, Rossi KA, Malmstrom SE, Abousleiman M, Sereda L, Apedo A, Robl JA, Miller KJ, Krupinski J, Wacker DA. Synthesis and structure–activity relationship of dihydrobenzofuran derivatives as novel human GPR119 agonists. Bioorg Med Chem Lett 2014; 24:2539-45. [DOI: 10.1016/j.bmcl.2014.03.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/11/2022]
|
20
|
Targeting GPR119 for the Potential Treatment of Type 2 Diabetes Mellitus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:95-131. [DOI: 10.1016/b978-0-12-800101-1.00004-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Scott JS, Brocklehurst KJ, Brown HS, Clarke DS, Coe H, Groombridge SD, Laber D, MacFaul PA, McKerrecher D, Schofield P. Conformational restriction in a series of GPR119 agonists: differences in pharmacology between mouse and human. Bioorg Med Chem Lett 2013; 23:3175-9. [PMID: 23628336 DOI: 10.1016/j.bmcl.2013.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 02/07/2023]
Abstract
A series of conformationally restricted GPR119 agonists were prepared based around a 3,8-diazabicyclo[3.2.1]octane scaffold. Examples were found to have markedly different pharmacology in mouse and human despite similar levels of binding to the receptor. This highlights the large effects on GPCR phamacology that can result from small structural changes in the ligand, together with inter-species differences between receptors.
Collapse
Affiliation(s)
- James S Scott
- Cardiovascular & Gastrointestinal Innovative Medicines Unit, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|