1
|
Yuan Y, Li M, Apostolopoulos V, Matsoukas J, Wolf WM, Blaskovich MAT, Bojarska J, Ziora ZM. Tetrazoles: A multi-potent motif in drug design. Eur J Med Chem 2024; 279:116870. [PMID: 39316842 DOI: 10.1016/j.ejmech.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
The unique physicochemical properties and fascinating bioisosterism of tetrazole scaffolds have received significant attention in medicinal chemistry. We report recent efforts using tetrazoles in drug design strategies in this context. Despite the increasing prevalence of tetrazoles in FDA-approved drugs for various conditions such as cancer, bacterial viral and fungal infections, asthma, hypertension, Alzheimer's disease, malaria, and tuberculosis, our understanding of their structure-activity relationships, multifunctional mechanisms, binding modes, and biochemical properties remains limited. We explore the potential of tetrazole bioisosteres in optimising lead molecules for innovative therapies, discussing applications, trends, advantages, limitations, and challenges. Additionally, we assess future research directions to drive further progress in this field.
Collapse
Affiliation(s)
- Ye Yuan
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Muzi Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia; Institute for Health and Sport, Immunology and Translational Research, Victoria University, Werribee, VIC 3030, Australia; Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, 3021, Australia
| | - John Matsoukas
- New Drug, Patras Science Park, 26500 Patras, Greece; Institute for Health and Sport, Victoria University, Melbourne, VIC, 3030, Australia; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, AB, T2N 4N1, Canada
| | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland.
| | - Zyta M Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
2
|
Abbas AA, Farghaly TA, Dawood KM. Recent progress in therapeutic applications of fluorinated five-membered heterocycles and their benzo-fused systems. RSC Adv 2024; 14:33864-33905. [PMID: 39463482 PMCID: PMC11503193 DOI: 10.1039/d4ra05697c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Heterocyclic derivatives grafted with fluorine atom(s) have attracted the attention of scientists due to the unique physicochemical properties of the C-F bond. The inclusion of fluorine atom(s) into organic compounds often increases their lipophilicity and metabolic stability, enhancing their bioavailability and affinity for target proteins. Therefore, it is not surprising to find that more than 20% of the medications on the market contain fluorine, and nearly 300 fluorine-containing drugs have been officially approved for use as medicines. In this review article, we are interested in classifying and describing the reports comprising varied therapeutic activities of the directly fluorinated five-membered heterocycles and their fused systems during the last two decades. These therapeutic activities included antiviral, anti-inflammatory, enzymatic inhibitory, antimalarial, anticoagulant, antipsychotic, antioxidant, antiprotozoal, histamine-H3 receptor, serotonin receptor, chemokine receptor, prostaglandin-D2 receptor, and PBR inhibition activities. In many cases, the activities of fluorinated azoles were almost equal to or exceeded the potency of reference drugs.
Collapse
Affiliation(s)
- Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt (+202) 35727556
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt (+202) 35727556
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah Saudi Arabia
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt (+202) 35727556
| |
Collapse
|
3
|
Chen Q, Wu C, Zhu J, Li E, Xu Z. Therapeutic potential of indole derivatives as anti-HIV agents: A mini-review. Curr Top Med Chem 2021; 22:993-1008. [PMID: 34636313 DOI: 10.2174/1568026621666211012111901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS), caused by human immunodeficiency virus (HIV), is one of the leading causes of human deaths. The advent of different anti-HIV drugs over different disease progress has made AIDS/HIV from a deadly infection to chronic and manageable disease. However, the development of multidrug-resistant viruses, together with the severe side effects of anti-HIV agents, compromised their efficacy and limited the treatment options. Indoles, the most common frameworks in the bioactive molecules, represent attractive scaffolds for the design and development of novel drugs. Indole derivatives are potential inhibitors of HIV enzymes such as reverse transcriptase, integrase and protease, and some indole-based agents like Delavirdine have already been applied in clinics or under clinical evaluations for the treatment of AIDS/HIV, revealing that indole moiety is a useful template for the development of anti-HIV agents. This review focuses on the recent advancement of indole derivatives including indole alkaloids, hybrids, and dimers with anti-HIV potential, covering articles published between 2010 and 2020. The chemical structures, structure-activity relationship and mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Qingtai Chen
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000. China
| | - Chongchong Wu
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta. Canada
| | - Jinjin Zhu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000. China
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000. China
| | - Zhi Xu
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000. China
| |
Collapse
|
4
|
Experimental and Computational Studies on N-alkylation Reaction of N-Benzoyl 5-(Aminomethyl)Tetrazole. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The N-alkylation reaction of N-benzoyl 5-(aminomethyl)tetrazole (5-AMT) with benzyl bromide was carried out in the presence of K2CO3 as a base. Two separable regioisomers were obtained, thus their purification led to determine the proportion of each of them, and their structures were attributed essentially based on 1H and 13C NMR spectroscopy in addition to the elemental analysis and MS data. In order to confirm the results obtained at the synthesis level, a computational study was carried out by application of density functional theory (DFT) using the Becke three-parameter hybrid exchange functional and the Lee-Yang-Parr correlation functional (B3LYP).
Collapse
|
5
|
Sudhakar Mokenapelli, Gutam M, Yerrabelli JR, Irlapati VK, Gorityala N, Sagurthi SR, Chitneni PR. Design and Synthesis of Novel 2-Substituted-Benzyl-5-(2-Methylbenzofuran-3-yl)-2H-Tetrazoles: Anti-Proliferative Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020050179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Hosny A, Ashton M, Gong Y, McGarry K. The development of a predictive model to identify potential HIV-1 attachment inhibitors. Comput Biol Med 2020; 120:103743. [DOI: 10.1016/j.compbiomed.2020.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
|
7
|
An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur J Med Chem 2019; 180:562-612. [PMID: 31344615 DOI: 10.1016/j.ejmech.2019.07.019] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/23/2019] [Accepted: 07/06/2019] [Indexed: 01/06/2023]
Abstract
Heterocycles occupy a salient place in chemistry due to their wide range of activity in the fields of drug design, photochemistry, agrochemicals, dyes, and so on. Amongst all, indole scaffold is considered as one of the most promising heterocycles found in natural and synthetic sources and has been shown to possess various biological activity, including anti-inflammatory, anti-HIV, antitubercular, antimalarial, anticonvulsant, antidiabetic, antihypertensive, analgesics, antidepressant, anticancer, antioxidant, antifungal, and antimicrobial, etc. All the reported indole molecules bind to multiple receptors with high affinity, thus expedite the research on the development of novel biologically active compounds through the various approach. In this review, we aimed to highlight synthetic and medicinal perspective on the development of indole-based analogs. In addition, structural activity relationship (SAR) study to correlate for their biological activity also discussed.
Collapse
|
8
|
Popova EA, Trifonov RE, Ostrovskii VA. Tetrazoles for biomedicine. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4864] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur J Med Chem 2018; 163:404-412. [PMID: 30530192 DOI: 10.1016/j.ejmech.2018.12.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/18/2022]
Abstract
Tetrazole, a bioisostere of the carboxylic acid group, can replace the carboxyl group in drugs to increase the lipophilicity, bioavailability and reduce side effects. Tetrazole derivatives possess a broad-spectrum of biological properties including anti-tubercular and anti-malarial activities, and some tetrazole-based compounds have already been used in clinics for the treatment of various diseases. Therefore, tetrazole is an important pharmacophore in the development of new drugs. This review covers the recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents, and the structure-activity relationship is also discussed for the further rational design of tetrazole derivatives.
Collapse
|
10
|
Ravikumar P, Raolji GSB, Venkata Sastry K, Kalidasu S, Balaaraju T. Design, Synthesis, and Anticancer Evaluation of Tetrazole-Fused Benzoxazole Derivatives as Tubulin Binding Agents. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218100250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Nosova EV, Lipunova GN, Charushin VN, Chupakhin ON. Fluorine-containing indoles: Synthesis and biological activity. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Khalifa NM, Al-Omar MA, Amr AE. Synthesis and characterization of some novel 7-(aryl)-3-phenyl-6-(1H-tetrazol-5-yl)-5H-thiazolo[3,2-a]pyrimidin-5-one derivatives. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217070271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Synthesis and Anticancer Activity of 1-(1H-Indol-3-yl)-2-(4-diarylmethylpiperazine-1-yl)ethane-1,2-dione Derivatives. J CHEM-NY 2016. [DOI: 10.1155/2016/4617454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several new 1-(4-diarylmethylpiperazine-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione derivatives were synthesized by acylation of 1-diarylmethylpiperazine with 2-(1H-indol-3-yl)-2-oxoacetyl chloride. Their structures were confirmed by1H NMR, IR, mass spectra, and elemental analysis. These compounds were further evaluated for their anticancer activity, and most of them were found to have moderate-to-potent antiproliferative activities against Hela, A-549, and ECA-109 cancer cell linesin vitro.
Collapse
|
14
|
Inhibitors of HIV-1 attachment: The discovery and structure-activity relationships of tetrahydroisoquinolines as replacements for the piperazine benzamide in the 3-glyoxylyl 6-azaindole pharmacophore. Bioorg Med Chem Lett 2015; 26:160-7. [PMID: 26584882 DOI: 10.1016/j.bmcl.2015.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 11/22/2022]
Abstract
6,6-Fused ring systems including tetrahydroisoquinolines and tetrahydropyrido[3,4-d]pyrimidines have been explored as possible replacements for the piperazine benzamide portion of the HIV-1 attachment inhibitor BMS-663068. In initial studies, the tetrahydroisoquinoline compounds demonstrate sub-nanomolar activity in a HIV-1 pseudotype viral infection assay used as the initial screen for inhibitory activity. Analysis of SARs and approaches to optimization for an improved drug-like profile are examined herein.
Collapse
|
15
|
Wei CX, Bian M, Gong GH. Tetrazolium compounds: synthesis and applications in medicine. Molecules 2015; 20:5528-53. [PMID: 25826789 PMCID: PMC6272207 DOI: 10.3390/molecules20045528] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/26/2023] Open
Abstract
Tetrazoles represent a class of five-membered heterocyclic compounds with polynitrogen electron-rich planar structural features. This special structure makes tetrazole derivatives useful drugs, explosives, and other functional materials with a wide range of applications in many fields of medicine, agriculture, material science, etc. Based on our research works on azoles and other references in recent years, this review covers reported work on the synthesis and biological activities of tetrazole derivatives.
Collapse
Affiliation(s)
- Cheng-Xi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, Inner Mongolia, China.
| | - Ming Bian
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, Inner Mongolia, China.
| | - Guo-Hua Gong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, Inner Mongolia, China.
- Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China.
| |
Collapse
|
16
|
Wang J, Li Y, Yang Y, Zhang J, Du J, Zhang S, Yang L. Profiling the interaction mechanism of indole-based derivatives targeting the HIV-1 gp120 receptor. RSC Adv 2015. [DOI: 10.1039/c5ra04299b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A glycoprotein exposed on a viral surface, human immunodeficiency virus type 1 (HIV-1) gp120 is essential for virus entry into cells as it plays a vital role in seeking out specific cell surface receptors for entry.
Collapse
Affiliation(s)
- Jinghui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Department of Materials Sciences and Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Department of Materials Sciences and Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Yinfeng Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Department of Materials Sciences and Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Jingxiao Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Department of Materials Sciences and Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Jian Du
- Institute of Chemical Process Systems Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Shuwei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Department of Materials Sciences and Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery
- Dalian Institute of Chemical Physics
- Graduate School of the Chinese Academy of Sciences
- Dalian
- China
| |
Collapse
|
17
|
Zhang MZ, Chen Q, Yang GF. A review on recent developments of indole-containing antiviral agents. Eur J Med Chem 2014; 89:421-41. [PMID: 25462257 PMCID: PMC7115707 DOI: 10.1016/j.ejmech.2014.10.065] [Citation(s) in RCA: 601] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
Indole represents one of the most important privileged scaffolds in drug discovery. Indole derivatives have the unique property of mimicking the structure of peptides and to bind reversibly to enzymes, which provide tremendous opportunities to discover novel drugs with different modes of action. There are seven indole-containing commercial drugs in the Top-200 Best Selling Drugs by US Retail Sales in 2012. There are also an amazing number of approved indole-containing drugs in the market as well as compounds currently going through different clinical phases or registration statuses. This review focused on the recent development of indole derivatives as antiviral agents with the following objectives: 1) To present one of the most comprehensive listings of indole antiviral agents, drugs on market or compounds in clinical trials; 2) To focus on recent developments of indole compounds (including natural products) and their antiviral activities, summarize the structure property, hoping to inspire new and even more creative approaches; 3) To offer perspectives on how indole scaffolds as a privileged structure might be exploited in the future.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjing 30071, PR China.
| |
Collapse
|
18
|
Liu T, Huang B, Zhan P, De Clercq E, Liu X. Discovery of small molecular inhibitors targeting HIV-1 gp120-CD4 interaction drived from BMS-378806. Eur J Med Chem 2014; 86:481-90. [PMID: 25203778 DOI: 10.1016/j.ejmech.2014.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
The HIV-1 entry into host cells is a complex, multi-factors involved, and multi-step process. Especially, the attachment of HIV-1 envelope glycoprotein gp120 to the host cell receptor CD4 is the first key step during entry process, representing a promising antiviral therapeutic target. Among the HIV-1 attachment inhibitors blocking the interaction between gp120 and CD4 cells, BMS-378806 and NBD-556 are two representative small molecular chemical entities. Particularly, BMS-378806 and its derivatives are newly identified class of orally bioavailable HIV-1 inhibitors that interfere gp120-CD4 interaction. In this review, we focused on describing the structure-activity relationships (SARs), structural modifications, in vitro or even in vivo pharmacodynamics and pharmacokinetics of BMS-378806 and its analogues as HIV-1 gp120 attachment inhibitors. In addition, the brief SARs, structural modifications of NBD-556 and its derivatives targeting the "Phe-43 cavity" as CD4 mimics were also described.
Collapse
Affiliation(s)
- Tao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Erik De Clercq
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
19
|
Synthesis, Spectral Analysis, In Vitro Microbiological Evaluation, and Molecular Docking Studies of Some Novel 1-(1-Aryl-1H-tetrazol-5-yl)-2-(piperidin-1-yl)ethanone Derivatives. ISRN ORGANIC CHEMISTRY 2014; 2014:120173. [PMID: 24944827 PMCID: PMC4040197 DOI: 10.1155/2014/120173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/06/2014] [Indexed: 11/17/2022]
Abstract
A new series of novel heterocyclic compounds containing both tetrazoles and piperidine nuclei together, namely, 1-(1-aryl-1H-tetrazol-5-yl)-2-(piperidin-1-yl)ethanone (22–28), were synthesized by the treatment of the respective 2-chloro-1-(1-aryl-1H-tetrazol-5-yl)ethanone (15–21) with piperidine in acetonitrile for 6 h. A series of novel tetrazole substituted piperidine derivatives were synthesized and evaluated for their antimicrobial activity using serial dilution method. The structures of the synthesized compounds were characterized by IR, 1H NMR, 13C NMR, mass spectral data, and elemental analysis. Evaluation of antimicrobial activity shows that several compounds exhibit good activity when compared with the reference drug candidates and thus could be promising new lead molecules.
Collapse
|
20
|
Synthesis of tetrazole containing 1,2,3-thiadiazole derivatives via U-4CR and their anti-TMV activity. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Bender JA, Yang Z, Eggers B, Gong YF, Lin PF, Parker DD, Rahematpura S, Zheng M, Meanwell NA, Kadow JF. Inhibitors of HIV-1 attachment. Part 11: the discovery and structure-activity relationships associated with 4,6-diazaindole cores. Bioorg Med Chem Lett 2012. [PMID: 23206859 DOI: 10.1016/j.bmcl.2012.10.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of HIV-1 attachment inhibitors containing a 4,6-diazaindole core were examined in an effort to identify a compound which improved upon the potency and oral exposure of BMS-488043 (2). BMS-488043 (2) is a 6-azaindole-based HIV-1 attachment inhibitor which established proof-of-concept for this mechanism in human clinical studies but required high doses and concomitant administration of a high fat meal to achieve efficacious exposures. Based on previous studies in indole and azaindole scaffolds, SAR investigation was concentrated around the key 7-position in the 4,6-diazaindole series and led to the discovery of molecules with 5- to 20-fold increases in potency and three- to seven-fold increases in exposure over 2 in a rat PK studies.
Collapse
Affiliation(s)
- John A Bender
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|