1
|
Barnes GL, Magann NL, Perrotta D, Hörmann FM, Fernandez S, Vydyam P, Choi JY, Prudhomme J, Neal A, Le Roch KG, Ben Mamoun C, Vanderwal CD. A Divergent Synthesis of Numerous Pyrroloiminoquinone Alkaloids Identifies Promising Antiprotozoal Agents. J Am Chem Soc 2024. [PMID: 39412402 DOI: 10.1021/jacs.4c11897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2024]
Abstract
On the basis of a streamlined route to the pyrroloiminoquinone (PIQ) core, we made 16 natural products spread across four classes of biosynthetically related alkaloid natural products, and multiple structural analogs, all in ≤8 steps longest linear sequence (LLS). The strategy features a Larock indole synthesis as the key operation in a five-step synthesis of a key methoxy-PIQ intermediate. Critically, this compound was readily diverged via selective methylation of either (or both) of the imine-like or pyrrole nitrogens, which then permitted further divergence by either O-demethylation to o-quinone natural products or displacement of the methoxy group with a range of amine nucleophiles. Based on a single, early report of their potential utility against the malaria parasite, we assayed these compounds against several strains of Plasmodium falciparum, as well as two species of the related protozoan parasite Babesia. In combination with evaluations of their human cytotoxicity, we identified several compounds with potent (low-nM IC50) antimalarial and antibabesial activities that are much less toxic toward mammalian cells and are therefore promising lead compounds for antiprotozoal drug discovery.
Collapse
Affiliation(s)
- Griffin L Barnes
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Nicholas L Magann
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Daniele Perrotta
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Fabian M Hörmann
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Sebastian Fernandez
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Pratap Vydyam
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Jae-Yeon Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Jacques Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Armund Neal
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Christopher D Vanderwal
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, 856 Health Sciences Road, Suite 5400, Irvine, California 92697, United States
| |
Collapse
|
2
|
Králová P, Soural M. Biological properties of pyrroloquinoline and pyrroloisoquinoline derivatives. Eur J Med Chem 2024; 269:116287. [PMID: 38492334 DOI: 10.1016/j.ejmech.2024.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
In this review, we summarize pyrroloquinoline and pyrroloisoquinoline derivatives (PQs and PIQs) that act on a broad spectrum of biological targets and are used as bacteriostatic, antiviral, plasmodial, anticancer, antidiabetic and anticoagulant agents. Many of these compounds play important roles in the study of DNA and its interactions, the regulation of the cell cycle and programmed cell death. This review involves twenty-five types of skeletally analogical compounds bearing pyrrole and (iso)quinoline scaffolds with different mutual annelations.
Collapse
Affiliation(s)
- Petra Králová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu12, 771 46, Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Zhang J, Yu J, Liu M, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. Small-molecule modulators of tumor immune microenvironment. Bioorg Chem 2024; 145:107251. [PMID: 38442612 DOI: 10.1016/j.bioorg.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
In recent years, tumor immunotherapy, aimed at increasing the activity of immune cells and reducing immunosuppressive effects, has attracted wide attention. Among them, immune checkpoint blocking (ICB) is the most commonly explored therapeutic approach. All approved immune checkpoint inhibitors (ICIs) are clinically effective monoclonal antibodies (mAbs). Compared with biological agents, small-molecule drugs have many unique advantages in tumor immunotherapy. Therefore, they also play an important role. Immunosuppressive signals such as PD-L1, IDO1, and TGF-β, etc. overexpressed in tumor cells form the tumor immunosuppressive microenvironment. In addition, the efficacy of multi-pathway combined immunotherapy has also been reported and verified. Here, we mainly reviewed the mechanism of tumor immunotherapy, analyzed the research status of small-molecule modulators, and discussed drug candidates' structure-activity relationship (SAR). It provides more opportunities for further research to design more immune small-molecule modulators with novel structures.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meijing Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
Kalinski JCJ, Polyzois A, Waterworth SC, Siwe Noundou X, Dorrington RA. Current Perspectives on Pyrroloiminoquinones: Distribution, Biosynthesis and Drug Discovery Potential. Molecules 2022; 27:8724. [PMID: 36557854 PMCID: PMC9787360 DOI: 10.3390/molecules27248724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pyrroloiminoquinones are a group of cytotoxic alkaloids most commonly isolated from marine sponges. Structurally, they are based on a tricyclic pyrrolo[4,3,2-de]quinoline core and encompass marine natural products such as makaluvamines, tsitsikammamines and discorhabdins. These diverse compounds are known to exhibit a broad spectrum of biological activities including anticancer, antiplasmodial, antimicrobial, antifungal and antiviral activities as well as the inhibition of several key cellular enzymes. The resurgence of interest in pyrroloiminoquinones and the convoluted understanding regarding their biological activities have prompted this review. Herein, we provided a concise summary of key findings and recent developments pertaining to their structural diversity, distribution, biogenesis, and their potential as chemical probes for drug development, including a discussion of promising synthetic analogs.
Collapse
Affiliation(s)
| | - Alexandros Polyzois
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | | | - Xavier Siwe Noundou
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Rosemary A. Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| |
Collapse
|
5
|
Tan Y, Liu M, Li M, Chen Y, Ren M. Indoleamine 2, 3-dioxygenase 1 inhibitory compounds from natural sources. Front Pharmacol 2022; 13:1046818. [PMID: 36408235 PMCID: PMC9672321 DOI: 10.3389/fphar.2022.1046818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
L-tryptophan metabolism is involved in the regulation of many important physiological processes, such as, immune response, inflammation, and neuronal function. Indoleamine 2, 3-dioxygenase 1 (IDO1) is a key enzyme that catalyzes the first rate-limiting step of tryptophan conversion to kynurenine. Thus, inhibiting IDO1 may have therapeutic benefits for various diseases, such as, cancer, autoimmune disease, and depression. In the search for potent IDO1 inhibitors, natural quinones were the first reported IDO1 inhibitors with potent inhibitory activity. Subsequently, natural compounds with diverse structures have been found to have anti-IDO1 inhibitory activity. In this review, we provide a summary of these natural IDO1 inhibitors, which are classified as quinones, polyphenols, alkaloids and others. The overview of in vitro IDO1 inhibitory activity of natural compounds will help medicinal chemists to understand the mode of action and medical benefits of them. The scaffolds of these natural compounds can also be used for further optimization of potent IDO1 inhibitors.
Collapse
Affiliation(s)
- Ying Tan
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming Li
- Office of Academic Affairs, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujuan Chen
- Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Ren
- United Front Work Department, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Meng Ren,
| |
Collapse
|
6
|
Levy T, Marchand L, Stroobant V, Pilotte L, Van den Eynde B, Rodriguez F, Delfourne E. IDO1 and TDO inhibitory evaluation of analogues of the marine pyrroloiminoquinone alkaloids: Wakayin and Tsitsikammamines. Bioorg Med Chem Lett 2021; 40:127910. [PMID: 33711443 DOI: 10.1016/j.bmcl.2021.127910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO1) and tryptophane 2,3-dioxygenase (TDO) are two heme-containing enzymes which catalyze the conversion of tryptophan to N-formylkynurenine. Both enzymes are well establish therapeutic targets as important factors in the tumor immune evasion mechanism. A number of analogues of the marine pyrroloquinoline alkaloids tsitsikammamines or wakayin have been synthesized, two of them were synthesized using an original method to build the bispyrroloquinone framework. All the derivatives were evaluated in a cellular assay for their capacity to inhibit the enzymes. Six compounds have shown a significant potency on HEK 293-EBNA cell lines expressing hIDO1 or hTDO.
Collapse
Affiliation(s)
- Thomas Levy
- Université Paul Sabatier, UMR CNRS 5068, Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique, 118 Route de Narbonne, 31062 Toulouse Cédex 9, France
| | - Laura Marchand
- Université Paul Sabatier, UMR CNRS 5068, Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique, 118 Route de Narbonne, 31062 Toulouse Cédex 9, France
| | - Vincent Stroobant
- Ludwig Cancer Research Ltd (Brussels Branch) & de Duve Institute (Tumor Immunology & Antigen Processing Group), Avenue Hippocrate 74 (UCL B1.7403) B-1200, Bruxelles, Belgium
| | - Luc Pilotte
- Ludwig Cancer Research Ltd (Brussels Branch) & de Duve Institute (Tumor Immunology & Antigen Processing Group), Avenue Hippocrate 74 (UCL B1.7403) B-1200, Bruxelles, Belgium
| | - Benoît Van den Eynde
- Ludwig Cancer Research Ltd (Brussels Branch) & de Duve Institute (Tumor Immunology & Antigen Processing Group), Avenue Hippocrate 74 (UCL B1.7403) B-1200, Bruxelles, Belgium
| | - Frédéric Rodriguez
- Université Paul Sabatier, UMR CNRS 5068, Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique, 118 Route de Narbonne, 31062 Toulouse Cédex 9, France
| | - Evelyne Delfourne
- Université Paul Sabatier, UMR CNRS 5068, Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique, 118 Route de Narbonne, 31062 Toulouse Cédex 9, France.
| |
Collapse
|
7
|
Zhang F, Niu Y, Hong D, Ye Y, Hua Y, Ding S, Zhang Y. Synthetic studies towards atkamine. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Singh R, Salunke DB. Diverse chemical space of indoleamine-2,3-dioxygenase 1 (Ido1) inhibitors. Eur J Med Chem 2020; 211:113071. [PMID: 33341650 DOI: 10.1016/j.ejmech.2020.113071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) catalyses the first and rate limiting step of kynurenine pathway accounting for the major contributor of L-Tryptophan degradation. The Kynurenine metabolites are identified as essential cofactors, antagonists, neurotoxins, immunomodulators, antioxidants as well as carcinogens. The catalytic active site of IDO1 enzyme consists of hydrophobic Pocket-A positioned in the distal heme site and remains connected to a second hydrophobic Pocket-B towards the entrance of the active site. IDO1 enzyme also relates directly to the modulation of the innate and adaptive immune system. Various studies proved that the over expression of IDO1 enzyme play a predominant role in the escape of immunity during cancer progression. Recently, there has been considerable interest in evaluating the potential of IDO1 inhibitors to mobilize the body's immune system against solid tumours. In the last two decades, enormous attempts to advance new IDO1 inhibitors are on-going both in pharmaceutical industries and in academia which resulted in the discovery of a diverse range of selective and potent IDO1 inhibitors. The IDO1 inhibitors have therapeutic utility in various diseases and in the near future, it may have utility in the treatment of COVID-19. Despite various reviews on IDO1 inhibitors in last five years, none of the reviews provide a complete overview of diverse chemical space including naturally occurring and synthetic IDO1 inhibitors with detailed structure activity relationship studies. The present work provides a complete overview on the IDO1 inhibitors known in the literature so far along with the Structure-Activity Relationship (SAR) in each class of compounds.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
9
|
Discovery of 5-(pyridin-3-yl)-1H-indole-4,7-diones as indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Bioorg Med Chem Lett 2020; 30:126901. [DOI: 10.1016/j.bmcl.2019.126901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 02/04/2023]
|
10
|
Wang XX, Sun SY, Dong QQ, Wu XX, Tang W, Xing YQ. Recent advances in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. MEDCHEMCOMM 2019; 10:1740-1754. [PMID: 32055299 DOI: 10.1039/c9md00208a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), an important immunoregulatory enzyme ubiquitously expressed in various tissues and cells, plays a key role in tryptophan metabolism via the kynurenine pathway and has emerged as an attractive therapeutic target for the treatment of cancer and other diseases, such as Alzheimer's disease and arthritis. IDO1 has diverse biological roles in immune suppression and tumor progression by tryptophan catabolism. In addition, IDO1-mediated immune tolerance assists tumor cells in escaping the immune surveillance. Recently, extensive and enormous investigations have been made in the discovery of IDO1 inhibitors in both academia and pharmaceutical companies. In this review, IDO1 inhibitors are grouped as tryptophan derivatives, inhibitors with an imidazole, 1,2,3-triazole or tetrazole scaffold, inhibitors with quinone or iminoquinone, N-hydroxyamidines and other derivatives, and their enzymatic inhibitory activity, selectivity and other biological activities are also introduced and summarized.
Collapse
Affiliation(s)
- Xiu-Xiu Wang
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Si-Yu Sun
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Qing-Qing Dong
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Xiao-Xiang Wu
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Wei Tang
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Ya-Qun Xing
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| |
Collapse
|
11
|
Li F, Peifer C, Janussen D, Tasdemir D. New Discorhabdin Alkaloids from the Antarctic Deep-Sea Sponge Latrunculia biformis. Mar Drugs 2019; 17:md17080439. [PMID: 31349703 PMCID: PMC6722921 DOI: 10.3390/md17080439] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
The sponge genus Latrunculia is a prolific source of discorhabdin type pyrroloiminoquinone alkaloids. In the continuation of our research interest into this genus, we studied the Antarctic deep-sea sponge Latrunculia biformis that showed potent in vitro anticancer activity. A targeted isolation process guided by bioactivity and molecular networking-based metabolomics yielded three known discorhabdins, (-)-discorhabdin L (1), (+)-discorhabdin A (2), (+)-discorhabdin Q (3), and three new discorhabdin analogs (-)-2-bromo-discorhabdin D (4), (-)-1-acetyl-discorhabdin L (5), and (+)-1-octacosatrienoyl-discorhabdin L (6) from the MeOH-soluble portion of the organic extract. The chemical structures of 1-6 were elucidated by extensive NMR, HR-ESIMS, FT-IR, [α]D, and ECD (Electronic Circular Dichroism) spectroscopy analyses. Compounds 1, 5, and 6 showed promising anticancer activity with IC50 values of 0.94, 2.71, and 34.0 µM, respectively. Compounds 1-6 and the enantiomer of 1 ((+)-discorhabdin L, 1e) were docked to the active sites of two anticancer targets, topoisomerase I-II and indoleamine 2,3-dioxygenase (IDO1), to reveal, for the first time, the binding potential of discorhabdins to these proteins. Compounds 5 and 6 are the first discorhabdin analogs with an ester function at C-1 and 6 is the first discorhabdin bearing a long-chain fatty acid at this position. This study confirms Latrunculia sponges to be excellent sources of chemically diverse discorhabdin alkaloids.
Collapse
Affiliation(s)
- Fengjie Li
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, Kiel 24106, Germany
| | - Christian Peifer
- Pharmaceutical Chemistry, Kiel University, Gutenbergstraße 76, Kiel 24118, Germany
| | - Dorte Janussen
- Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, Frankfurt D-60325, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, Kiel 24106, Germany.
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, Kiel 24118, Germany.
| |
Collapse
|
12
|
Jain S, Bhardwaj B, Amin SA, Adhikari N, Jha T, Gayen S. Exploration of good and bad structural fingerprints for inhibition of indoleamine-2,3-dioxygenase enzyme in cancer immunotherapy using Monte Carlo optimization and Bayesian classification QSAR modeling. J Biomol Struct Dyn 2019; 38:1683-1696. [PMID: 31057090 DOI: 10.1080/07391102.2019.1615000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) is an extrahepatic, heme-containing and tryptophan-catalyzing enzyme responsible for causing blockade of T-cell proliferation and differentiation by depleting tryptophan level in cancerous cells. Therefore, inhibition of IDO1 may be a useful strategy for immunotherapy against cancer. In this study, 448 structurally diverse IDO1 inhibitors with a wide range of activity has been taken into consideration for classification QSAR analysis through Monte Carlo Optimization by using different splits as well as different combinations of SMILES-based, graph-based and hybrid descriptors. The best model from Monte Carlo optimization was interpreted to find out the good and bad structural fingerprints for IDO1 and further justified by using Bayesian classification QSAR modeling. Among the three splits in Monte Carlo optimization, the statistics of the best model was obtained from Split 3: sensitivity = 0.87, specificity = 0.91, accuracy = 0.89 and MCC = 0.78. In Bayesian classification modeling, the ROC scores for training and test set were found to be 0.91 and 0.86, respectively. The combined modeling analysis revealed that the presence of aryl hydrazyl sulphonyl moiety, furazan ring, halogen substitution, nitro group and hetero atoms in aromatic system can be very useful in designing IDO1 inhibitors. All the good and bad structural fingerprints for IDO1 were identified and are justified by correlating these fragments to the inhibition of IDO1 enzyme. These structural fingerprints will guide the researchers in this field to design better inhibitors against IDO1 enzyme for cancer immunotherapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanskar Jain
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | - Bhagwati Bhardwaj
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| |
Collapse
|
13
|
Li F, Janussen D, Peifer C, Pérez-Victoria I, Tasdemir D. Targeted Isolation of Tsitsikammamines from the Antarctic Deep-Sea Sponge Latrunculia biformis by Molecular Networking and Anticancer Activity. Mar Drugs 2018; 16:md16080268. [PMID: 30072656 PMCID: PMC6117724 DOI: 10.3390/md16080268] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
The Antarctic deep-sea sponge Latrunculia (Latrunculia) biformis Kirkpatrick, 1908 (Class Demospongiae Sollas, Order Poecilosclerida Topsent, Latrunculiidae Topsent) was selected for chemical analyses due to its potent anticancer activity. Metabolomic analysis of its crude extract by HRMS/MS-based molecular networking showed the presence of several clusters of pyrroloiminoquinone alkaloids, i.e., discorhabdin and epinardin-type brominated pyridopyrroloquinolines and tsitsikammamines, the non-brominated bis-pyrroloiminoquinones. Molecular networking approach combined with a bioactivity-guided isolation led to the targeted isolation of the known pyrroloiminoquinone tsitsikammamine A (1) and its new analog 16,17-dehydrotsitsikammamine A (2). The chemical structures of the compounds 1 and 2 were elucidated by spectroscopic analysis (one-dimensional (1D) and two-dimensional (2D) NMR, HR-ESIMS). Due to minute amounts, molecular modeling and docking was used to assess potential affinities to potential targets of the isolated compounds, including DNA intercalation, topoisomerase I-II, and indoleamine 2,3-dioxygenase enzymes. Tsitsikammamines represent a small class of pyrroloiminoquinone alkaloids that have only previously been reported from the South African sponge genus Tsitsikamma Samaai & Kelly and an Australian species of the sponge genus Zyzzya de Laubenfels. This is the first report of tsitsikammamines from the genus Latrunculia du Bocage and the successful application of molecular networking in the identification of comprehensive chemical inventory of L.biformis followed by targeted isolation of new molecules. This study highlights the high productivity of secondary metabolites of Latrunculia sponges and may shed new light on their biosynthetic origin and chemotaxonomy.
Collapse
Affiliation(s)
- Fengjie Li
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Marine Natural Products Research Unit Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany.
| | - Dorte Janussen
- Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt, Germany.
| | - Christian Peifer
- Pharmaceutical Chemistry, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Parque Tecnológico de la Salud, Av. Conocimiento 18016 Granada, Spain.
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Marine Natural Products Research Unit Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany.
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany.
| |
Collapse
|
14
|
Weng T, Qiu X, Wang J, Li Z, Bian J. Recent discovery of indoleamine-2,3-dioxygenase 1 inhibitors targeting cancer immunotherapy. Eur J Med Chem 2018; 143:656-669. [DOI: 10.1016/j.ejmech.2017.11.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/04/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
|
15
|
Discovery of imidazoleisoindole derivatives as potent IDO1 inhibitors: Design, synthesis, biological evaluation and computational studies. Eur J Med Chem 2017; 140:293-304. [DOI: 10.1016/j.ejmech.2017.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/20/2017] [Accepted: 09/14/2017] [Indexed: 11/24/2022]
|
16
|
Discovery of potent IDO1 inhibitors derived from tryptophan using scaffold-hopping and structure-based design approaches. Eur J Med Chem 2017; 138:199-211. [DOI: 10.1016/j.ejmech.2017.06.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/07/2017] [Accepted: 06/22/2017] [Indexed: 11/18/2022]
|
17
|
Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine Pharmacology in 2012-2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2017; 15:md15090273. [PMID: 28850074 PMCID: PMC5618412 DOI: 10.3390/md15090273] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Abimael D Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA.
| | | | | |
Collapse
|
18
|
Nijampatnam B, Dutta S, Velu SE. Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin. Chin J Nat Med 2016; 13:561-77. [PMID: 26253489 DOI: 10.1016/s1875-5364(15)30052-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 12/29/2022]
Abstract
The ocean continues to provide a plethora of unique scaffolds capable of remarkable biological applications. A large number of pyrroloiminoquinone alkaloids, including discorhabdins, epinardins, batzellines, makaluvamines, and veiutamine, have been isolated from various marine organisms. A class of pyrroloiminoquinone-related alkaloids, known as bispyrroloquinones, is the focus of this review article. This family of marine alkaloids, which contain an aryl substituted bispyrroloquinone ring system, includes three subclasses of alkaloids namely, wakayin, tsitsikammamines A-B, and zyzzyanones A-D. Both wakayin and the tsitsikammamines contain a tetracyclic fused bispyrroloiminoquinone ring system, while zyzzyanones contain a fused tricyclic bispyrroloquinone ring system. The unique chemical structures of these marine natural products and their diverse biological properties, including antifungal and antimicrobial activity, as well as the potent, albeit generally nonspecific and universal cytotoxicities, have attracted great interest of synthetic chemists over the past three decades. Tsitsikammamines, wakayin, and several of their analogs show inhibition of topoisomerases. One additional possible mechanism of anticancer activity of tsitsikammamines analogs that has been discovered recently is through the inhibition of indoleamine 2, 3-dioxygenase, an enzyme involved in tumoral immune resistance. This review discusses the isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids and their analogs.
Collapse
Affiliation(s)
| | - Shilpa Dutta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Abstract
Indoleamine 2,3-dioxygenase (IDO, subsequently named IDO1) can degrade the level of essential amino acid tryptophan in mammals, and catalyze the initial and rate-limiting step through the kynurenine pathway. Broad evidence implies that IDO is overexpressed in both tumor cells and antigen-presenting cells, facilitating the escape of malignant tumors from immune surveillance. In the past decades, the inhibition of IDO has been one of the most promising areas in cancer immunotherapy and many potential inhibitors of IDO have been designed, synthesized and evaluated, among which d-1-methyl-tryptophan and INCB24360 have advanced to clinical trial stage. This review aims to give an overview of the rationale for IDO as a therapeutic target as well as the research progress of IDO inhibitors.
Collapse
|
20
|
Röhrig UF, Majjigapu SR, Vogel P, Zoete V, Michielin O. Challenges in the Discovery of Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. J Med Chem 2015; 58:9421-37. [DOI: 10.1021/acs.jmedchem.5b00326] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ute F. Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Laboratory
of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory
of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1015 Lausanne, Switzerland
- Department of Oncology, University of Lausanne and Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| |
Collapse
|
21
|
Anticancer properties of lamellarins. Mar Drugs 2015; 13:1105-23. [PMID: 25706633 PMCID: PMC4377975 DOI: 10.3390/md13031105] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/24/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed here and the mechanistic portrait of lamellarin D is detailed. Lamellarins frequently serve as a starting point in the design of anticancer compounds. Extensive efforts have been devoted to create novel structures as well as to improve synthetic methods, leading to lamellarins and related pyrrole-derived marine alkaloids.
Collapse
|
22
|
Röhrig UF, Majjigapu SR, Chambon M, Bron S, Pilotte L, Colau D, Van den Eynde BJ, Turcatti G, Vogel P, Zoete V, Michielin O. Detailed analysis and follow-up studies of a high-throughput screening for indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Eur J Med Chem 2014; 84:284-301. [PMID: 25036789 DOI: 10.1016/j.ejmech.2014.06.078] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 01/28/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a key regulator of immune responses and therefore an important therapeutic target for the treatment of diseases that involve pathological immune escape, such as cancer. Here, we describe a robust and sensitive high-throughput screen (HTS) for IDO1 inhibitors using the Prestwick Chemical Library of 1200 FDA-approved drugs and the Maybridge HitFinder Collection of 14,000 small molecules. Of the 60 hits selected for follow-up studies, 14 displayed IC50 values below 20 μM under the secondary assay conditions, and 4 showed an activity in cellular tests. In view of the high attrition rate we used both experimental and computational techniques to identify and to characterize compounds inhibiting IDO1 through unspecific inhibition mechanisms such as chemical reactivity, redox cycling, or aggregation. One specific IDO1 inhibitor scaffold, the imidazole antifungal agents, was chosen for rational structure-based lead optimization, which led to more soluble and smaller compounds with micromolar activity.
Collapse
Affiliation(s)
- Ute F Röhrig
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| | - Somi Reddy Majjigapu
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland; Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Marc Chambon
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Sylvian Bron
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| | - Luc Pilotte
- de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium.
| | - Didier Colau
- de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium.
| | - Benoît J Van den Eynde
- de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium.
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| | - Olivier Michielin
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland; Department of Oncology, University of Lausanne and Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland; Ludwig Center for Cancer Research of the University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
23
|
Serra S, Moineaux L, Vancraeynest C, Masereel B, Wouters J, Pochet L, Frédérick R. Thiosemicarbazide, a fragment with promising indolamine-2,3-dioxygenase (IDO) inhibition properties. Eur J Med Chem 2014; 82:96-105. [DOI: 10.1016/j.ejmech.2014.05.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/30/2014] [Accepted: 05/14/2014] [Indexed: 11/30/2022]
|
24
|
Dolušić E, Frédérick R. Indoleamine 2,3-dioxygenase inhibitors: a patent review (2008 – 2012). Expert Opin Ther Pat 2013; 23:1367-81. [DOI: 10.1517/13543776.2013.827662] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Synthesis of Pyrroloquinones via a CAN Mediated Oxidative Free Radical Reaction of 1,3-Dicarbonyl Compounds with Aminoquinones. J CHEM-NY 2013; 2013. [PMID: 25705550 PMCID: PMC4332705 DOI: 10.1155/2013/262580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Pyrroloquinone ring systems are important structural units present in many biologically active molecules including a number of marine alkaloids. For example, they are found in a series of marine metabolites, such as tsitsikammamines, zyzzyanones, wakayin, and terreusinone. Several of these alkaloids have exhibited antimicrobial, antimalarial, antifungal, antitumor, and photoprotecting activities. Synthesis of pyrroloquinone unit is the key step in the synthesis of many of these important organic molecules. Here, we present a ceric (IV) ammonium nitrate (CAN) mediated oxidative free radical cyclization reaction of 1,3-dicarbonyl compounds with aminoquinones as a facile methodology for making various substituted pyrroloquinones. 1,3-dicarbonyl compounds used in this study are ethyl acetoacetate, acetylacetone, benzoyl acetone, and N,N-dimethyl acetoacetamide. The aminoquinones used in this study are 2-(benzylamino)naphthalene-1,4-dione and 6-(benzylamino)-1-tosyl-1H-indole-4,7-dione. The yields of the synthesized pyrroloquinones ranged from 23–91%.
Collapse
|