1
|
Khamees Thabet H, Ammar YA, Imran M, Hamdy Helal M, Ibrahim Alaqel S, Alshehri A, Ash Mohd A, Abusaif MS, Ragab A. Unveiling anti-diabetic potential of new thiazole-sulfonamide derivatives: Design, synthesis, in vitro bio-evaluation targeting DPP-4, α-glucosidase, and α-amylase with in-silico ADMET and docking simulation. Bioorg Chem 2024; 151:107671. [PMID: 39067419 DOI: 10.1016/j.bioorg.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Diabetes mellitus type 2 (T2DM) can be managed by targeting dipeptidyl peptidase-4 (DPP-4), an enzyme that breaks down and deactivates peptides such as GIP and GLP-1. In this context, a new series of 2-(2-substituted hydrazineyl)thiazole derivatives 4, 5, 6, 8, 10, and 11 conjugated with the 2-hydroxy-5-(pyrrolidin-1-ylsulfonyl)benzylidene fragment were designed and synthesized. The virtual screening of the designed derivatives inside DPP-4 demonstrated good to moderate activity, with binding affinity ranging from -6.86 to -5.36 kcal/mol compared to Sitagliptin (S=-5.58 kcal/mol). These results encourage us to evaluate DPP-4 using in-vitro fluorescence-based assay. The in-vitro results exhibited inhibitory percentage (IP) values ranging from 40.66 to 75.62 % in comparison to Sitagliptin (IP=63.14 %) at 100 µM. Subsequently, the IC50 values were determined, and the 5-aryl thiazole derivatives 10 and 11 revealed strong potent IC50 values 2.75 ± 0.27 and 2.51 ± 0.27 µM, respectively, compared to Sitagliptin (3.32 ± 0.22 µM). The SAR study exhibited the importance of the substituents on the thiazole scaffold, especially with the hydrophobic fragment at C5 of the thiazole, which has a role in the activity. Compounds 10 and 11 were further assessed toward α-glucosidase and α-amylase enzymes and give promising results. Compound 10 showed good activity against α-glucosidase with IC50 value of 3.02 ± 0.23 µM compared to Acarbose 3.05 ± 0.22 µM and (11 = 3.34 ± 0.10 µM). On the other hand, for α-amylase, compound 11 was found to be most effective with IC50 value of 2.91 ± 0.23 µM compared to compound 10 = 3.30 ± 0.16 µM and Acarbose (2.99 ± 0.21 µM) indicating that these derivatives could reduce glucose by more than one target. The most active derivatives 10 and 11 attracted great interest as candidates for oral bioavailability and safe toxicity profiles compared to positive controls. The in-silico docking simulation was performed to understand the binding interactions inside the DPP-4, α-glucosidase, and α-amylase pockets, and it was found to be promising antidiabetic agents through a number of interactions.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia.
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohamed Hamdy Helal
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Saleh Ibrahim Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam 31441, Saudi Arabia
| | - Abida Ash Mohd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| |
Collapse
|
2
|
Mori NP, Parmar PK, Khedkar VM, Khunt RC. Synthesis of N-Methylene Linker Containing Phthalimide Bearing-1 H-1,2,3-Triazole by Click Chemistry Approach: Anticancer Activity in Human Cells. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Navneet P. Mori
- Chemistry Research Laboratory, Department of Chemistry, Saurashtra University, Rajkot, India
| | - Priti K. Parmar
- Chemistry Research Laboratory, Department of Chemistry, Saurashtra University, Rajkot, India
| | | | - Ranjan C. Khunt
- Chemistry Research Laboratory, Department of Chemistry, Saurashtra University, Rajkot, India
| |
Collapse
|
3
|
Askarzadeh M, Azizian H, Adib M, Mohammadi-Khanaposhtani M, Mojtabavi S, Faramarzi MA, Sajjadi-Jazi SM, Larijani B, Hamedifar H, Mahdavi M. Design, synthesis, in vitro α-glucosidase inhibition, docking, and molecular dynamics of new phthalimide-benzenesulfonamide hybrids for targeting type 2 diabetes. Sci Rep 2022; 12:10569. [PMID: 35732907 PMCID: PMC9217978 DOI: 10.1038/s41598-022-14896-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
In the present work, a new series of 14 novel phthalimide-benzenesulfonamide derivatives 4a-n were synthesized, and their inhibitory activity against yeast α-glucosidase was screened. The obtained results indicated that most of the newly synthesized compounds showed prominent inhibitory activity against α-glucosidase. Among them, 4-phenylpiperazin derivative 4m exhibited the strongest inhibition with the IC50 value of 52.2 ± 0.1 µM. Enzyme kinetic study of compound 4m proved that its inhibition mode was competitive and Ki value of this compound was calculated to be 52.7 µM. In silico induced fit docking and molecular dynamics studies were performed to further investigate the interaction, orientation, and conformation of the target compounds over the active site of α-glucosidase. Obtained date of these studies demonstrated that our new compounds interacted as well with the α-glucosidase active site with the acceptable binding energies. Furthermore, in silico druglikeness/ADME/Toxicity studies of compound 4m were performed and predicted that this compound is druglikeness and has good ADME and toxicity profiles.
Collapse
Affiliation(s)
- Mohammad Askarzadeh
- School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Adib
- School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran.
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Campkin DM, Shimadate Y, Bartholomew B, Bernhardt PV, Nash RJ, Sakoff JA, Kato A, Simone MI. Borylated 2,3,4,5-Tetrachlorophthalimide and Their 2,3,4,5-Tetrachlorobenzamide Analogues: Synthesis, Their Glycosidase Inhibition and Anticancer Properties in View to Boron Neutron Capture Therapy. Molecules 2022; 27:3447. [PMID: 35684388 PMCID: PMC9182199 DOI: 10.3390/molecules27113447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Tetrachlorinated phthalimide analogues bearing a boron-pinacolate ester group were synthesised via two synthetic routes and evaluated in their glycosidase modulating and anticancer properties, with a view to use them in boron neutron capture therapy (BNCT), a promising radiation type for cancer, as this therapy does little damage to biological tissue. An unexpected decarbonylation/decarboxylation to five 2,3,4,5-tetrachlorobenzamides was observed and confirmed by X-ray crystallography studies, thus, giving access to a family of borylated 2,3,4,5-tetrachlorobenzamides. Biological evaluation showed the benzamide drugs to possess good to weak potencies (74.7-870 μM) in the inhibition of glycosidases, and to have good to moderate selectivity in the inhibition of a panel of 18 glycosidases. Furthermore, in the inhibition of selected glycosidases, there is a core subset of three animal glycosidases, which is always inhibited (rat intestinal maltase α-glucosidase, bovine liver β-glucosidase and β-galactosidase). This could indicate the involvement of the boron atom in the binding. These glycosidases are targeted for the management of diabetes, viral infections (via a broad-spectrum approach) and lysosomal storage disorders. Assays against cancer cell lines revealed potency in growth inhibition for three molecules, and selectivity for one of these molecules, with the growth of the normal cell line MCF10A not being affected by this compound. One of these molecules showed both potency and selectivity; thus, it is a candidate for further study in this area. This paper provides numerous novel aspects, including expedited access to borylated 2,3,4,5-tetrachlorophthalimides and to 2,3,4,5-tetrachlorobenzamides. The latter constitutes a novel family of glycosidase modulating drugs. Furthermore, a greener synthetic access to such structures is described.
Collapse
Affiliation(s)
- David M. Campkin
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.S.); (A.K.)
| | - Barbara Bartholomew
- Phytoquest Ltd., Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK; (B.B.); (R.J.N.)
| | - Paul V. Bernhardt
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Robert J. Nash
- Phytoquest Ltd., Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK; (B.B.); (R.J.N.)
| | - Jennette A. Sakoff
- Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia;
- Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW 2298, Australia
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.S.); (A.K.)
| | - Michela I. Simone
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia;
| |
Collapse
|
5
|
Simone MI, Wood A, Campkin D, Kiefel MJ, Houston TA. Recent results from non-basic glycosidase inhibitors: How structural diversity can inform general strategies for improving inhibition potency. Eur J Med Chem 2022; 235:114282. [DOI: 10.1016/j.ejmech.2022.114282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
|
6
|
Design, synthesis, biological evaluations and in silico studies of sulfonate ester derivatives of 2-(2-benzylidenehydrazono)thiazolidin-4-one as potential α-glucosidase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Jasiewicz B, Kozanecka-Okupnik W, Przygodzki M, Warżajtis B, Rychlewska U, Pospieszny T, Mrówczyńska L. Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives. Sci Rep 2021; 11:15425. [PMID: 34326403 PMCID: PMC8322387 DOI: 10.1038/s41598-021-94904-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 12/04/2022] Open
Abstract
A series of fifteen indole derivatives substituted at the C-3 position were synthesized and characterized. The antioxidant activity of all derivatives was investigated by three in vitro antioxidant assays, and the derivative with pyrrolidinedithiocarbamate moiety was the most active as a radical scavenger and Fe3+-Fe2+ reducer. It can be stated that possible hydrogen and electron transfer mechanism is suggested for the quenching of the free radical. Moreover, the indolyl radical stabilization and the presence of unsubstituted indole nitrogen atom are mandatory for the observed antioxidant activity, which strongly depends on the type of the substituent directly connected to the methylene group at the C-3 position. Human red blood cells (RBC) have been used as a cell model to study derivatives interaction with the cell membrane. Haemolytic activity and RBC shape transformation were observed for certain derivatives in a concentration-dependent manner. However, most of the derivatives at sublytic concentration showed high cytoprotective activity against oxidative haemolysis induced by 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH). The cytoprotective properties of derivatives can be explained mostly due to their interactions with the RBC membrane components. Taking together, theoretical estimations and experimental data confirm the beneficial interactions between the selected C-3 substituted indole derivatives and the RBC membrane under oxidative stress conditions. These results encourage us to further structural optimization of C-3 substituted indole derivatives as potent antioxidant compounds.
Collapse
Affiliation(s)
- Beata Jasiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | | | - Michał Przygodzki
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Beata Warżajtis
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Urszula Rychlewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Tomasz Pospieszny
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
8
|
Hekal MH, Ali YM, Abu El-Azm FSM. Utilization of cyanoacetohydrazide and 2-(1,3-dioxoisoindolin-2-yl) acetyl chloride in the synthesis of some novel anti-proliferative heterocyclic compounds. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1786125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mohamed H. Hekal
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Yasmeen M. Ali
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
9
|
In vitro dual-target activities and in vivo antidiabetic effect of 3-hydroxy-N-(p-hydroxy-phenethyl) phthalimide in high-fat diet and streptozotocin-induced diabetic golden hamsters. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02628-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Almeida ML, Oliveira MC, Pitta IR, Pitta MG. Advances in Synthesis and Medicinal Applications of Compounds Derived from Phthalimide. Curr Org Synth 2020; 17:252-270. [DOI: 10.2174/1570179417666200325124712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
Abstract
Phthalimide derivatives have been presenting several promising biological activities in the literature,
such as anti-inflammatory, analgesic, antitumor, antimicrobial and anticonvulsant. The most well-known and
studied phthalimide derivative (isoindoline-1,3-dione) is thalidomide: this compound initially presented
important sedative effects, but it is now known that thalidomide has effectiveness against a wide variety of
diseases, including inflammation and cancer. This review approaches some of the recent and efficient chemical
synthesis pathways to obtain phthalimide analogues and also presents a summary of the main biological
activities of these derivatives found in the literature. Therefore, this review describes the chemical and
therapeutic aspects of phthalimide derivatives.
Collapse
Affiliation(s)
- Marcel L. Almeida
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Maria C.V.A. Oliveira
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Ivan R. Pitta
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Marina G.R. Pitta
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
11
|
Phatak PS, Bakale RD, Dhumal ST, Dahiwade LK, Choudhari PB, Siva Krishna V, Sriram D, Haval KP. Synthesis, antitubercular evaluation and molecular docking studies of phthalimide bearing 1,2,3-triazoles. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1614630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Pramod S. Phatak
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University Sub-Campus,Osmanabad, MS, India
| | - Rajubai D. Bakale
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University Sub-Campus,Osmanabad, MS, India
| | - Sambhaji T. Dhumal
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MS, India
| | - Lalita K. Dahiwade
- Department of Pharmaceutical Chemistry, Bharati Vidhyapeeth College of Pharmacy, Kolhapur, MS, India
| | - Prafulla B. Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidhyapeeth College of Pharmacy, Kolhapur, MS, India
| | - Vagolu Siva Krishna
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Kishan P. Haval
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University Sub-Campus,Osmanabad, MS, India
| |
Collapse
|
12
|
Chen J, Lu W, Chen H, Bian X, Yang G. A New Series of Salicylic Acid Derivatives as Non-saccharide α-Glucosidase Inhibitors and Antioxidants. Biol Pharm Bull 2019; 42:231-246. [DOI: 10.1248/bpb.b18-00661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Wenfang Lu
- College of Pharmacy, Xi’an Jiaotong University
| | - Hao Chen
- College of Pharmacy, Xi’an Jiaotong University
| | - Xiaoli Bian
- College of Pharmacy, Xi’an Jiaotong University
| | | |
Collapse
|
13
|
Lian F, Sun C, Xu K, Zeng C. Electrochemical Dehydrogenative Imidation of N-Methyl-Substituted Benzylamines with Phthalimides for the Direct Synthesis of Phthalimide-Protected gem-Diamines. Org Lett 2018; 21:156-159. [DOI: 10.1021/acs.orglett.8b03624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fei Lian
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Caocao Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Kun Xu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Chengchu Zeng
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
14
|
Ji F, Li J, Li X, Guo W, Wu W, Jiang H. Carbonylation Access to Phthalimides Using Self-Sufficient Directing Group and Nucleophile. J Org Chem 2017; 83:104-112. [DOI: 10.1021/acs.joc.7b02433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fanghua Ji
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jianxiao Li
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xianwei Li
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wei Guo
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanqing Wu
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
15
|
Wang GC, Peng YP, Xie ZZ, Wang J, Chen M. Synthesis, α-glucosidase inhibition and molecular docking studies of novel thiazolidine-2,4-dione or rhodanine derivatives. MEDCHEMCOMM 2017; 8:1477-1484. [PMID: 30108859 DOI: 10.1039/c7md00173h] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/28/2017] [Indexed: 12/13/2022]
Abstract
A series of novel thiazolidine-2,4-dione or rhodanine derivatives (5a-5k, 6a-6k) were synthesized and evaluated for their α-glucosidase inhibitory activity. The majority of compounds exhibited potent inhibitory activity in the range of 5.44 ± 0.13 to 50.45 ± 0.39 μM, when compared to the standard drug acarbose (IC50 = 817.38 ± 6.27 μM). Among the compounds in the series, compounds 5k, 6a, 6b, 6e, 6h and 6k showed potent inhibitory potential with IC50 values of 20.95 ± 0.21, 16.11 ± 0.19, 7.72 ± 0.16, 7.91 ± 0.17, 6.59 ± 0.15 and 5.44 ± 0.13 μM, respectively. Compound 6k (IC50 = 5.44 ± 0.13 μM), containing chloro and rhodanine groups at the 2- and 4-positions of the phenyl ring respectively, was found to be the most active compound that inhibits α-glucosidase activity. Furthermore, molecular docking studies were performed to understand the binding interactions between the molecule and enzyme.
Collapse
Affiliation(s)
- Guang-Cheng Wang
- College of Chemistry and Chemical Engineering , Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains , Jishou University , Jishou 416000 , PR China .
| | - Ya-Ping Peng
- College of Chemistry and Chemical Engineering , Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains , Jishou University , Jishou 416000 , PR China .
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering , Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains , Jishou University , Jishou 416000 , PR China .
| | - Jing Wang
- College of Chemistry and Chemical Engineering , Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains , Jishou University , Jishou 416000 , PR China .
| | - Ming Chen
- College of Chemistry and Chemical Engineering , Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains , Jishou University , Jishou 416000 , PR China .
| |
Collapse
|
16
|
Liu B, Wang Y, Liao B, Zhang C, Zhou X. Palladium-catalyzed cycloaminocarbonylation of 2-aminomethyl- and 2-alkylcarbamoylaryl tosylates with CO. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.08.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Wang QQ, Cheng N, Yi WB, Peng SM, Zou XQ. Synthesis, nitric oxide release, and α-glucosidase inhibition of nitric oxide donating apigenin and chrysin derivatives. Bioorg Med Chem 2014; 22:1515-21. [PMID: 24508143 DOI: 10.1016/j.bmc.2014.01.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
α-Glucosidase (AG) play crucial roles in the digestion of carbohydrates. Inhibitors of α-glucosidase (AGIs) are promising candidates for the development of anti-diabetic drugs. Here, five series of apigenin and chrysin nitric oxide (NO)-donating derivatives were synthesised and evaluated for their AG inhibitory activity and NO releasing capacity in vitro. Except for 9a-c, twelve compounds showed remarkable inhibitory activity against α-glucosidase, with potency being better than that of acarbose and 1-deoxynojirimycin. All organic nitrate derivatives released low concentrations of NO in the presence of l-cysteine. Structure activity relationship studies indicated that 5-OH, hydrophobic coupling chain, and carbonyl groups of the coupling chain could enhance the inhibitory activity. Apigenin and chrysin derivatives therefore represents a new class of promising compounds that can inhibit α-glucosidase activity and supply moderate NO for preventing the development of diabetic complications.
Collapse
Affiliation(s)
- Qi-Qin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Ning Cheng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Wen-Bing Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Sheng-Ming Peng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Postdoctoral Programme of Chemical Engineering & Technology, Xiangtan University, Xiangtan 411105, China.
| | - Xiao-Qing Zou
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
18
|
Bian X, Fan X, Ke C, Luan Y, Zhao G, Zeng A. Synthesis and α-glucosidase inhibitory activity evaluation of N-substituted aminomethyl-β-d-glucopyranosides. Bioorg Med Chem 2013; 21:5442-50. [PMID: 23810673 DOI: 10.1016/j.bmc.2013.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 11/27/2022]
Abstract
A series of N-substituted 1-aminomethyl-β-d-glucopyranoside derivatives was prepared. These novel synthetic compounds were assessed in vitro for inhibitory activity against yeast α-glucosidase and both rat intestinal α-glucosidases maltase and sucrase. Most of the compounds displayed α-glucosidase inhibitory activity, with IC50 values covering the wide range from 2.3μM to 2.0mM. Compounds 19a (IC50=2.3μM) and 19b (IC50=5.6μM) were identified as the most potent inhibitors for yeast α-glucosidase, while compounds 16 (IC50=7.7 and 15.6μM) and 19e (IC50=5.1 and 10.4μM) were the strongest inhibitors of rat intestinal maltase and sucrase. Analysis of the kinetics of enzyme inhibition indicated that 19e inhibited maltase and sucrase in a competitive manner. The results suggest that the aminomethyl-β-d-glucopyranoside moiety can mimic the substrates of α-glucosidase in the enzyme catalytic site, leading to competitive enzyme inhibition. Moreover, the nature of the N-substituent has considerable influence on inhibitory potency.
Collapse
Affiliation(s)
- Xiaoli Bian
- College of Pharmacy, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi Province 710061, People's Republic of China
| | | | | | | | | | | |
Collapse
|