1
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
2
|
Qiao Z, Xu J, Gallazzi F, Fisher DR, Gonzalez R, Kwak J, Miao Y. Effect of Ibuprofen as an Albumin Binder on Melanoma-Targeting Properties of 177Lu-Labeled Ibuprofen-Conjugated Alpha-Melanocyte-Stimulating Hormone Peptides. Mol Pharm 2024; 21:4004-4011. [PMID: 38973113 DOI: 10.1021/acs.molpharmaceut.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The purpose of this study was to examine how the introduction of ibuprofen (IBU) affected tumor-targeting and biodistribution properties of 177Lu-labeled IBU-conjugated alpha-melanocyte-stimulating hormone peptides. The IBU was used as an albumin binder and conjugated to the DOTA-Lys moiety without or with a linker to yield DOTA-Lys(IBU)-GG-Nle-CycMSHhex {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Lys(IBU)-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2}, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex peptides. Their melanocortin-receptor 1 (MC1R) binding affinities were determined on B16/F10 melanoma cells first. Then the biodistribution of 177Lu-labeled peptides was determined on B16/F10 melanoma-bearing C57 mice at 2 h postinjection to choose the lead peptide for further examination. The full biodistribution and melanoma imaging properties of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex were further evaluated using B16/F10 melanoma-bearing C57 mice. DOTA-Lys(IBU)-GG-Nle-CycMSHhex, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex displayed the IC50 values of 1.41 ± 0.37, 1.52 ± 0.08, 0.03 ± 0.01, and 0.58 ± 0.06 nM on B16/F10 melanoma cells, respectively. 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex exhibited the lowest liver and kidney uptake among all four designed 177Lu peptides. Therefore, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was further evaluated for its full biodistribution and melanoma imaging properties. The B16/F10 melanoma uptake of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was 19.5 ± 3.12, 24.12 ± 3.35, 23.85 ± 2.08, and 10.80 ± 2.89% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. Moreover, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex could clearly visualize the B16/F10 melanoma lesions at 2 h postinjection. The conjugation of IBU with or without a linker to GGNle-CycMSHhex affected the MC1R binding affinities of the designed peptides. The charge of the linker played a key role in the liver and kidney uptake of 177Lu-Asp-IBU, 177Lu-Asn-IBU, and 177Lu-Dab-IBU. 177Lu-Asp-IBU exhibited higher tumor/liver and tumor/kidney uptake ratios than those of 177Lu-Asn-IBU and 177Lu-Dab-IBU, underscoring its potential evaluation for melanoma therapy in the future.
Collapse
Affiliation(s)
- Zheng Qiao
- Department of Radiology, University of Colorado Denver, Aurora, Colorado 80045, United States
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, Colorado 80045, United States
| | - Fabio Gallazzi
- Department of Chemistry and Molecular Interactions Core, University of Missouri, Columbia, Missouri 65211, United States
| | - Darrell R Fisher
- Versant Medical Physics and Radiation Safety, Richland, Washington 99354, United States
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, Colorado 80045, United States
| | - Jennifer Kwak
- Department of Radiology, University of Colorado Denver, Aurora, Colorado 80045, United States
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, Colorado 80045, United States
| |
Collapse
|
3
|
Pun MD, Gallazzi F, Ho KV, Watkinson L, Carmack TL, Iweha E, Li L, Anderson CJ. Albumin-Binding Lutetium-177-Labeled LLP2A Derivatives as Theranostics for Melanoma. Mol Pharm 2024; 21:2960-2969. [PMID: 38680059 DOI: 10.1021/acs.molpharmaceut.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Very late antigen-4 (VLA-4) is a transmembrane integrin protein that is highly expressed in aggressive forms of metastatic melanoma. A small-molecule peptidomimetic, LLP2A, was found to have a low pM affinity binding to VLA-4. Because LLP2A itself does not inhibit cancer cell proliferation and survival, it is an ideal candidate for the imaging and delivery of therapeutic payloads. An analog of [177Lu]Lu-labeled-LLP2A was previously investigated as a therapeutic agent in melanoma tumor-bearing mice, resulting in only a modest improvement in tumor growth inhibition, likely due to rapid clearance of the agent from the tumor. To improve the pharmacokinetic profile, DOTAGA-PEG4-LLP2A with a 4-(p-iodophenyl)butyric acid (pIBA) albumin binding moiety was synthesized. We demonstrate the feasibility of this albumin binding strategy by comparing in vitro cell binding assays and in vivo biodistribution performance of [177Lu]Lu-DOTAGA-PEG4-LLP2A ([177Lu]Lu-1) to the albumin binding [177Lu]Lu-DOTAGA-pIBA-PEG4-LLP2A ([177Lu]Lu-2). In vitro cell binding assay results for [177Lu]Lu-1 and [177Lu]Lu-2 showed Kd values of 0.40 ± 0.07 and 1.75 ± 0.40 nM, with similar Bmax values of 200 ± 6 and 315 ± 15 fmol/mg, respectively. In vivo biodistribution data for both tracers exhibited specific uptake in the tumor, spleen, thymus, and bone due to endogenous expression of VLA-4. Compound [177Lu]Lu-2 exhibited a much longer blood circulation time compared to [177Lu]Lu-1. The tumor uptake for [177Lu]Lu-1 was highest at 1 h (∼15%ID/g) and that for [177Lu]Lu-2 was highest at 4 h (∼23%ID/g). Significant clearance of [177Lu]Lu-1 from the tumor occurs at 24 h (<5%ID/g) while[177Lu]Lu-2 is retained for greater than 96 h (∼10%ID/g). An efficacy study showed that melanoma tumor-bearing mice receiving compound [177Lu]Lu-2 given in two fractions (2 × 14.8 MBq, 14 days apart) had a greater median survival time than mice administered a single 29.6 MBq dose of compound [177Lu]Lu-1, while a single 29.6 MBq dose of [177Lu]Lu-2 imparted hematopoietic toxicity. The in vitro and in vivo data show addition of pIBA to [177Lu]Lu-DOTAGA-PEG4-LLP2A slows blood clearance for a higher tumor uptake, and there is potential of [177Lu]Lu-2 as a theranostic in fractionated administered doses.
Collapse
Affiliation(s)
- Michael D Pun
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Fabio Gallazzi
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Molecular Interactions Core, University of Missouri, Columbia, Missouri 65211, United States
| | - Khanh-Van Ho
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Lisa Watkinson
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri 65211, United States
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65211, United States
- University of Missouri Research Reactor Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Terry L Carmack
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri 65211, United States
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65211, United States
- University of Missouri Research Reactor Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Ejike Iweha
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Longbo Li
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Carolyn J Anderson
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri 65211, United States
- Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, Missouri 65212, United States
| |
Collapse
|
4
|
Szücs D, Szabó JP, Arató V, Gyuricza B, Szikra D, Tóth I, Képes Z, Trencsényi G, Fekete A. Investigation of the Effect on the Albumin Binding Moiety for the Pharmacokinetic Properties of 68Ga-, 205/206Bi-, and 177Lu-Labeled NAPamide-Based Radiopharmaceuticals. Pharmaceuticals (Basel) 2023; 16:1280. [PMID: 37765089 PMCID: PMC10536547 DOI: 10.3390/ph16091280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Although radiolabeled alpha-melanocyte stimulating hormone-analogue NAPamide derivatives are valuable melanoma-specific diagnostic probes, their rapid elimination kinetics and high renal uptake may preclude them from being used in clinical settings. We aimed at improving the pharmacokinetics of radiolabeled DOTA-NAPamide compounds by incorporating a 4-(p-iodo-phenyl)-butanoic acid (IPB) into the molecules. Followed by 68Ga-, 205/206Bi-, and 177Lu-labelling, the radiopharmaceuticals ([68Ga]Ga-DOTA-IPB-NAPamide, [205/206Bi]Bi-DOTA-IPB-NAPamide, [177Lu]Lu-DOTA-IPB-NAPamide) were characterized in vitro. To test the imaging behavior of the IPB-containing probes, B16F10 tumor-bearing C57BL/6 mice were subjected to in vivo microPET/microSPECT/CT imaging and ex vivo biodistribution studies. All tracers were stable in vitro, with radiochemical purity exceeding 98%. The use of albumin-binding moiety lengthened the in vivo biological half-life of the IPB-carrying radiopharmaceuticals, resulting in elevated tumor accumulation. Both [68Ga]Ga-DOTA-IPB-NAPamide (5.06 ± 1.08 %ID/g) and [205/206Bi]Bi-DOTA-IPB-NAPamide (4.50 ± 0.98 %ID/g) exhibited higher B16F10 tumor concentrations than their matches without the albumin-binding residue ([68Ga]Ga-DOTA-NAPamide and [205/206Bi]Bi-DOTA-NAPamide: 1.18 ± 0.27 %ID/g and 3.14 ± 0.32; respectively), however; the large amounts of off-target radioactivity do not confirm the benefits of half-life extension for short-lived isotopes. Enhanced [177Lu]Lu-DOTA-IPB-NAPamide tumor uptake even 24 h post-injection proved the advantage of IPB-based prolonged circulation time regarding long-lived radionuclides, although the significant background noise must be addressed in this case as well.
Collapse
Affiliation(s)
- Dániel Szücs
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Judit P. Szabó
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Viktória Arató
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
- Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Barbara Gyuricza
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
| | - Dezső Szikra
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
| | - Imre Tóth
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
| | - Anikó Fekete
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
| |
Collapse
|
5
|
Qiao Z, Xu J, Gonzalez R, Miao Y. Effects of Polyethylene Glycol and 8-Aminooctanoic Acid Linkers on Melanoma Uptake of [ 99mTc]Tc-Tricarbonyl-NOTA-Conjugated Lactam-Cyclized α-MSH Peptides. Bioconjug Chem 2023; 34:934-940. [PMID: 37140963 PMCID: PMC10192115 DOI: 10.1021/acs.bioconjchem.3c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The purpose of this study was to evaluate the effect of linkers on tumor targeting and biodistribution of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex {[99mTc]Tc(CO)3-1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid-polyethylene glycol-Nle-c[Asp-His-d-Phe-Arg-Trp-Lys]-CONH2} and [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex {[99mTc]Tc(CO)3-NOTA-8-aminooctanoic acid-Nle-CycMSHhex} on B16/F10 melanoma-bearing mice. NOTA-PEG2Nle-CycMSHhex and NOTA-AocNle-CycMSHhex were synthesized and radiolabeled with [99mTc]Tc via the {[99mTc]Tc(CO)3(OH2)3}+ intermediate. The biodistribution of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex and [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex was determined on B16/F10 melanoma-bearing C57 mice. The melanoma imaging property of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was determined on B16/F10 melanoma-bearing C57 mice. [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex and [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex were readily prepared with more than 90% radiochemical yields and exhibited MC1R-specific binding on B16/F10 melanoma cells. [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex exhibited a higher tumor uptake than [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex at 2, 4, and 24 h postinjection. The tumor uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was 13.63 ± 1.13, 31.93 ± 2.57, 20.31 ± 3.23, and 1.33 ± 0.15% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. The tumor uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was 1.6 and 3.4 times the tumor uptake of [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex at 2 and 4 h postinjection, respectively. Meanwhile, the normal organ uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was lower than 1.8% ID/g at 2 h postinjection. The renal uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was only 1.73 ± 0.37, 0.73 ± 0.14, and 0.03 ± 0.01% ID/g at 2, 4, and 24 h postinjection, respectively. [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex showed high tumor to normal organ uptake ratios at 2 h postinjection. Single-photon emission computed tomography imaging revealed that the B16/F10 melanoma lesions could be clearly visualized by [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex at 2 h postinjection. Overall, the high tumor uptake and low kidney uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex highlighted its potential for melanoma imaging and warranted the future evaluation of [188Re]Re(CO)3-NOTA-PEG2Nle-CycMSHhex for melanoma therapy.
Collapse
Affiliation(s)
- Zheng Qiao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Qiao Z, Xu J, Fisher DR, Gonzalez R, Miao Y. Introduction of a Polyethylene Glycol Linker Improves Uptake of 67Cu-NOTA-Conjugated Lactam-Cyclized Alpha-Melanocyte-Stimulating Hormone Peptide in Melanoma. Cancers (Basel) 2023; 15:2755. [PMID: 37345092 DOI: 10.3390/cancers15102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
The aim of this study was to evaluate the effect of linker on tumor targeting and biodistribution of 67Cu-NOTA-PEG2Nle-CycMSHhex {67Cu-1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid-polyethylene glycol-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and 67Cu-NOTA-GGNle-CycMSHhex {67Cu-NOTA-GlyGlyNle-CycMSHhex} on melanoma-bearing mice. NOTA-PEG2Nle-CycMSHhex and NOTA-GGNle-CycMSHhex were synthesized and purified by HPLC. The biodistribution of 67Cu-NOTA-PEG2Nle-CycMSHhex and 67Cu-NOTA-GGNle-CycMSHhex was determined in B16/F10 melanoma-bearing C57 mice. The melanoma imaging property of 67Cu-NOTA-PEG2Nle-CycMSHhex was further examined in B16/F10 melanoma-bearing C57 mice. 67Cu-NOTA-PEG2Nle-CycMSHhex exhibited higher tumor uptake than 67Cu-NOTA-GGNle-CycMSHhex at 2, 4, and 24 h post-injection. The tumor uptake of 67Cu-NOTA-PEG2Nle-CycMSHhex was 27.97 ± 1.98, 24.10 ± 1.83, and 9.13 ± 1.66% ID/g at 2, 4, and 24 h post-injection, respectively. Normal organ uptake of 67Cu-NOTA-PEG2Nle-CycMSHhex was lower than 2.6% ID/g at 4 h post-injection, except for kidney uptake. The renal uptake of 67Cu-NOTA-PEG2Nle-CycMSHhex was 6.43 ± 1.31, 2.60 ± 0.79, and 0.90 ± 0.18% ID/g at 2, 4, and 24 h post-injection, respectively. 67Cu-NOTA-PEG2Nle-CycMSHhex showed high tumor to normal organ uptake ratios after 2 h post-injection. The B16/F10 melanoma lesions could be clearly visualized by single photon emission computed tomography (SPECT) using 67Cu-NOTA-PEG2Nle-CycMSHhex as an imaging probe at 4 h post-injection. The favorable tumor targeting and biodistribution properties of 67Cu-NOTA-PEG2Nle-CycMSHhex underscored its potential as an MC1R-targeted therapeutic peptide for melanoma treatment.
Collapse
Affiliation(s)
- Zheng Qiao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Darrell R Fisher
- Versant Medical Physics and Radiation Safety, Richland, WA 99354, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Qiao Z, Xu J, Gonzalez R, Miao Y. Novel 64Cu-Labeled NOTA-Conjugated Lactam-Cyclized Alpha-Melanocyte-Stimulating Hormone Peptides with Enhanced Tumor to Kidney Uptake Ratios. Mol Pharm 2022; 19:2535-2541. [PMID: 35486894 PMCID: PMC10188253 DOI: 10.1021/acs.molpharmaceut.2c00211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of this study was to evaluate the effect of linker on tumor targeting and biodistribution of 64Cu-NOTA-PEG2Nle-CycMSHhex {64Cu-1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid-polyethylene glycol-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and 64Cu-NOTA-AocNle-CycMSHhex {64Cu-NOTA-8-aminooctanoic acid-Nle-CycMSHhex} on melanoma-bearing mice. NOTA-PEG2Nle-CycMSHhex and NOTA-AocNle-CycMSHhex were synthesized and purified by HPLC. The melanocortin-1 (MC1) receptor binding affinities of the peptides were examined on B16/F10 melanoma cells. The biodistributions of 64Cu-NOTA-PEG2Nle-CycMSHhex and 64Cu-NOTA-AocNle-CycMSHhex were determined on B16/F10 melanoma-bearing C57 mice. The melanoma imaging property of 64Cu-NOTA-PEG2Nle-CycMSHhex was further examined on B16/F10 melanoma-bearing C57 mice because of its higher melanoma uptake than 64Cu-NOTA-AocNle-CycMSHhex. The IC50 values of NOTA-PEG2Nle-CycMSHhex and NOTA-AocNle-CycMSHhex were 1.24 ± 0.07 and 2.75 ± 0.48 nM on B10/F10 melanoma cells. 64Cu-NOTA-PEG2Nle-CycMSHhex and 64Cu-NOTA-AocNle-CycMSHhex were readily prepared with more than 90% radiolabeling yields and showed MC1R-specific binding on B16/F10 cells. 64Cu-NOTA-PEG2Nle-CycMSHhex exhibited higher tumor uptake than 64Cu-NOTA-AocNle-CycMSHhex at 0.5, 2, 4, and 24 h post-injection. The tumor uptake of 64Cu-NOTA-PEG2Nle-CycMSHhex was 16.23 ± 0.42, 19.59 ± 1.48, 12.83 ± 1.69, and 8.78 ± 2.29% ID/g at 0.5, 2, 4, and 24 h post-injection, respectively. Normal organ uptake of 64Cu-NOTA-PEG2Nle-CycMSHhex was lower than 2% ID/g at 2 h post-injection except for kidney uptake. The renal uptake of 64Cu-NOTA-PEG2Nle-CycMSHhex was 3.66 ± 0.52, 3.27 ± 0.52, and 1.47 ± 0.56 ID/g at 2, 4, and 24 h post-injection, respectively. 64Cu-NOTA-PEG2Nle-CycMSHhex showed high tumor to normal organ uptake ratios after 2 h post-injection. The B16/F10 melanoma lesions could be clearly visualized by positron emission tomography (PET) using 64Cu-NOTA-PEG2Nle-CycMSHhex as an imaging probe at 2 h post-injection. High tumor uptake and low kidney uptake of 64Cu-NOTA-PEG2Nle-CycMSHhex underscored its potential as an MC1R-targeted theranostic peptide for melanoma imaging and therapy.
Collapse
Affiliation(s)
- Zheng Qiao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Qiao Z, Xu J, Gonzalez R, Miao Y. Novel Al 18F-NOTA-Conjugated Lactam-Cyclized α-Melanocyte-Stimulating Hormone Peptides with Enhanced Melanoma Uptake. Bioconjug Chem 2022; 33:982-990. [PMID: 35475603 PMCID: PMC10188279 DOI: 10.1021/acs.bioconjchem.2c00184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to evaluate the effect of linker on tumor targeting and biodistribution of Al18F-NOTA-PEG2Nle-CycMSHhex {Al18F-1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid-poly(ethylene glycol)-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and Al18F-NOTA-AocNle-CycMSHhex {Al18F-NOTA-8-aminooctanoic acid-Nle-CycMSHhex} on melanoma-bearing mice. NOTA-PEG2Nle-CycMSHhex and NOTA-AocNle-CycMSHhex were synthesized using fluorenylmethoxycarbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined on B16/F10 melanoma cells. The biodistribution of Al18F-NOTA-PEG2Nle-CycMSHhex and Al18F-NOTA-AocNle-CycMSHhex was determined on B16/F10 melanoma-bearing C57 mice. The melanoma imaging property of Al18F-NOTA-PEG2Nle-CycMSHhex was further examined on B16/F10 melanoma-bearing C57 mice because of its higher melanoma uptake and lower renal uptake than that of Al18F-NOTA-AocNle-CycMSHhex. The IC50 values of NOTA-PEG2/AocNle-CycMSHhex were 1.24 ± 0.07 and 2.75 ± 0.48 nM on B10/F10 cells. Al18F-NOTA-PEG2Nle-CycMSHhex and Al18F-NOTA-AocNle-CycMSHhex were readily prepared with more than 55% of radiolabeling yields and displayed melanocortin-1 receptor (MC1R)-specific binding on B16/F10 cells. Al18F-NOTA-PEG2Nle-CycMSHhex exhibited higher tumor uptake and lower kidney and liver uptake than Al18F-NOTA-AocNle-CycMSHhex at 1 and 2 h post injection. The tumor and renal uptakes of Al18F-NOTA-PEG2Nle-CycMSHhex were 17.44 ± 0.76 and 2.07 ± 0.43% ID/g at 1 h post injection, respectively. Al18F-NOTA-PEG2Nle-CycMSHhex showed the high tumor to normal organ uptake ratios after 1 h post injection. The B16/F10 melanoma lesions could be clearly visualized by positron emission tomography (PET) using Al18F-NOTA-PEG2Nle-CycMSHhex as an imaging probe at 1 and 2 h post injection. Overall, high tumor uptake, low kidney and liver uptake, and fast urinary clearance of Al18F-NOTA-PEG2Nle-CycMSHhex highlighted its potential as an MC1R-targeted imaging probe for melanoma detection.
Collapse
Affiliation(s)
- Zheng Qiao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Xu J, Gallazzi F, Fisher DR, Gonzalez R, Miao Y. The Effect of Albumin-Binding Moiety on Tumor Targeting and Biodistribution Properties of 67Ga-Labeled Albumin Binder-Conjugated Alpha-Melanocyte-Stimulating Hormone Peptides. Cancer Biother Radiopharm 2022; 37:47-55. [PMID: 34762521 PMCID: PMC8865629 DOI: 10.1089/cbr.2021.0273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: The purpose of this study was to examine the effect of 4-p-(tolyl)butyric acid as an albumin-binding (ALB) moiety on tumor targeting and biodistribution properties of 67Ga-labeled albumin binder-conjugated alpha-melanocyte-stimulating hormone peptides. Materials and Methods: DOTA-Lys(ALB)-G/GG/GGG-Nle-CycMSHhex {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Lys(ALB)-Gly/GlyGly/GlyGlyGly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} were synthesized with 4-p-(tolyl)butyric acid serving as an ALB moiety. The melanocortin-1 receptor (MC1R)-binding affinities of the peptides were determined on B16/F10 melanoma cells. The biodistribution of 67Ga-DOTA-Lys(ALB)-G/GG/GGG-Nle-CycMSHhex was examined on B16/F10 melanoma-bearing C57 mice at 2 h postinjection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of 67Ga-DOTA-Lys(ALB)-GGNle-CycMSHhex {67Ga-ALB-G2} were determined on B16/F10 melanoma-bearing C57 mice. Results: The IC50 value of DOTA-Lys(ALB)-G/GG/GGG-Nle-CycMSHhex {ALB-G1, ALB-G2, ALB-G3} was 0.67 ± 0.07, 0.5 ± 0.09 and 0.51 ± 0.03 nM on B16/F10 cells, respectively. 67Ga-ALB-G2 was further evaluated as a lead peptide because of its higher tumor uptake (30.25 ± 3.24%ID/g) and lower kidney uptake (7.09 ± 2.22%ID/g) than 67Ga-ALB-G1 and 67Ga-ALB-G3 at 2 h postinjection. The B16/F10 melanoma uptake of 67Ga-ALB-G2 was 15.64 ± 4.55, 30.25 ± 3.24, 26.76 ± 3.23, and 10.71 ± 1.21%ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. The B16/F10 melanoma lesions were clearly visualized by SPECT/CT using 67Ga-ALB-G2 as an imaging probe at 2 h postinjection. Conclusions: The introduction of 4-p-(tolyl)butyric acid as an ALB moiety increased the blood retention, and resulted in higher tumor/kidney ratio of 67Ga-ALB-G2 as compared with its counterpart without an albumin binder. However, the resulting high uptake of 67Ga-ALB-G2 in blood and liver need to be further reduced to facilitate its therapeutic application when replacing 67Ga with therapeutic radionuclides.
Collapse
Affiliation(s)
- Jingli Xu
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Fabio Gallazzi
- Department of Chemistry and Molecular Interactions Core, University of Missouri, Columbia, Missouri, USA
| | - Darrell R. Fisher
- Department of Pharmaceutical Sciences, Washington State University, Richland, Washington, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, Colorado, USA
| | - Yubin Miao
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA.,Address correspondence to: Yubin Miao; Department of Radiology, School of Medicine, University of Colorado Denver; 12700 East 19th Avenue, MS C278, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Roshanravan V, Soltani E, Hasanzadeh Haddad E, Sadeghi R, Sahebkari A, Mottaghi M, Aghaee A. Incidental Synchronous 99mTc-HYNIC-TOC Avid Lesion of the Neck in a Patient with Metastatic Melanoma: A Metastatic Lymph Node or a Carotid Body Tumor Masquerading As a Lymph Node? ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2022; 10:138-141. [PMID: 35800421 PMCID: PMC9205846 DOI: 10.22038/aojnmb.2021.59706.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/18/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022]
Abstract
A 53-year-old woman with a plantar malignant melanoma lesion was referred to our tertiary clinic for sentinel lymph node mapping. Lymphoscintigraphy with 99mTc-Phytate detected ipsilateral inguinal and popliteal sentinel nodes. After total resection of nodes, the pathology report confirmed that all specimens were involved by the tumor. As part of an institutional study evaluating somatostatin receptor avidity of melanoma by 99mTc-HYNIC-TOC scan, she also underwent a whole-body octreotide scan, which surprisingly showed intense tracer uptake in the right cervical region, confining in SPECT/CT images to a mass at the C2 spinal level, adjacent to the right carotid bifurcation. Neck surgery with gamma probe after injection of another dose of 99mTc-HYNIC-TOC was performed successfully, and the pathology report was consistent with a carotid body tumor. To best our knowledge, our case is the first one in the literature, which reports an incidental paraganglioma with 99mTc-HYNIC-TOC scan which resected via radio-guided surgery, again with 99mTc-HYNIC-TOC tracer.
Collapse
Affiliation(s)
- Vahid Roshanravan
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Soltani
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ramin Sadeghi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Sahebkari
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Mottaghi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Aghaee
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Atena Aghaee. Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: 05138012765;
| |
Collapse
|
11
|
Liu X, Liu H, Cheng L, Wu J, Bao T, Yao R, Liu Y. A 3-dimensional stationary cascade gamma-ray coincidence imager. Phys Med Biol 2021; 66. [PMID: 34666327 DOI: 10.1088/1361-6560/ac311b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022]
Abstract
Objective.For certain radionuclides that decay through emitting two or more gamma photons consecutively within a short time interval-called cascade gamma-rays, the location where a radiopharmaceutical molecule emits cascade gamma-rays can be identified through coincidence detection of the photons. If each cascade photon is detected through a collimation mechanism, the location of the molecule can be inferred from the intersection of the back-projections of the two photons.Approach.In this work, we report the design and evaluation of a three-dimensional stationary imager based on this concept for imaging distributions of cascade-emitting radionuclides in radiopharmaceutical therapy. The imager was composed of two gamma-ray cameras assembled in an L-shape. Both cameras were NaI(Tl) scintillator based, one with a multi-slit collimator, the other with a multi-pinhole collimator. The field of view (FOV) was 100 mm (∅) × 100 mm (L). Based on the unique characteristics of the cascade coincidence events, we used a direct back-projection algorithm to reconstruct point source images for assessing the imager's intrinsic spatial resolution and the standard maximum likelihood expectation maximization algorithm for reconstructing phantom images.Main results.We evaluated the performance of the imager in both simulated and prototype form with radionuclide177Lu (cascade photon emitter). On the simulated imager, the coincidence detection efficiency at the center of FOV was 3.85 × 10-6, the spatial resolution was 7.0 mm. On the prototype imager, the corresponding values were 3.20 × 10-6and 6.7 mm, respectively. Simulated hot-rod and experimental cardiac phantom studies demonstrate the first three-dimensional cascade gamma coincidence imager is fully functional.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory of Particle & Radiation Imaging, Ministry of Education (Tsinghua University), Beijing 100084, People's Republic of China
| | - Hui Liu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory of Particle & Radiation Imaging, Ministry of Education (Tsinghua University), Beijing 100084, People's Republic of China
| | - Li Cheng
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory of Particle & Radiation Imaging, Ministry of Education (Tsinghua University), Beijing 100084, People's Republic of China
| | - Jing Wu
- Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Tianwei Bao
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rutao Yao
- Department of Nuclear Medicine, University at Buffalo, State University of New York, NY 14214, United States of America
| | - Yaqiang Liu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory of Particle & Radiation Imaging, Ministry of Education (Tsinghua University), Beijing 100084, People's Republic of China
| |
Collapse
|
12
|
Filippi L, Frantellizzi V, De Vincentis G. David versus Goliath: Radiotheranostic nanomedicine as a weapon against melanoma. Cancer Treat Res Commun 2021; 29:100478. [PMID: 34689017 DOI: 10.1016/j.ctarc.2021.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022]
Abstract
Malignant melanoma (MM), especially when diagnosed at an advanced stage, still represents a challenge for physicians. In recent years, immune check point inhibitors (ICI) have thoroughly changed MM landscape, although only 20-40% of MM patients respond to ICI. In MM progressing after ICI, treatment options, especially in case of MM not bearing V600 mutation, are limited. In this scenario, radionuclide theranostics, based on the sequential administration of a radiopharmaceuticals' pair, the first labeled with a radionuclide emitting energy suitable for imaging (i.e. positrons or gamma-rays), the second bound to another nuclide emitting particles for therapy, is particularly welcome. Melanocortin 1 Receptor (MC1R), strongly overexpressed by MM cells, has recently emerged as an interesting target for radionuclide theranostics. In the following, we briefly cover some emerging applications of MC1R-targeted radionuclide theranostics, also with reference to the potential of implementing some innovative nanotechnologies, such as gold nanoparticles, to move the field forward.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, "Santa Maria Goretti" Hospital, via Canova, Latina, 04100, Italy.
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Xu J, Qiao Z, Gonzalez R, Miao Y. Facile preparation of a novel Ga-67-labeled NODAGA-conjugated lactam-cyclized alpha-MSH peptide at room temperature for melanoma targeting. Bioorg Med Chem Lett 2020; 30:127627. [PMID: 33141072 DOI: 10.1016/j.bmcl.2020.127627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022]
Abstract
In this study, the melanoma targeting property of 67Ga-NODAGA-GGNle-CycMSHhex {1,4,7-triazacyclononane,1-gluteric acid-4,7-acetic acid-GlyGlyNle-c[Asp-His-D-Phe-Arg-Trp-Lys]-CONH2} was determined on B16/F10 melanoma-bearing C57 mice to demonstrate the feasibility of NODAGA as a radiometal chelator for facile room temperature radiolabeling of NODAGA-GGNle-CycMSHhex. The IC50 value of NODAGA-GGNle-CycMSHhex was 0.87 ± 0.12 nM on B16/F10 melanoma cells. 67Ga-NODAGA-GGNle-CycMSHhex was readily prepared at room temperature with greater than 98% radiolabeling yield and displayed MC1R-specific binding on B16/F10 melanoma cells. The B16/F10 melanoma uptake of 67Ga-NODAGA-GGNle-CycMSHhex was 10.31 ± 0.78, 14.96 ± 1.34, 13.7 ± 3.33 and 10.4 ± 2.2% ID/g at 0.5, 2, 4 and 24 h post-injection, respectively. Approximately 85% of the injected dose was cleared out the body via urinary system at 2 h post-injection. 67Ga-NODAGA-GGNle-CycMSHhex showed high tumor/blood, tumor/muscle and tumor/skin uptake ratios after 2 h post-injection. Overall, 67Ga-NODAGA-GGNle-CycMSHhex could be easily prepared at room temperature and exhibited favorable melanoma targeting property, suggesting the potential use of NODAGA as a radiometal chelator for facile room temperature radiolabeling of α-MSH peptides.
Collapse
Affiliation(s)
- Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Zheng Qiao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Miao Y, Quinn TP. Advances in Receptor-Targeted Radiolabeled Peptides for Melanoma Imaging and Therapy. J Nucl Med 2020; 62:313-318. [PMID: 33277401 DOI: 10.2967/jnumed.120.243840] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022] Open
Abstract
Melanocortin-1 receptor (MC1R) and very late antigen-4 (VLA-4, integrin α4β1) are 2 attractive molecular targets for developing peptide radiopharmaceuticals for melanoma imaging and therapy. MC1R- and VLA-4-targeting peptides and peptide-conjugated Cornell prime dots (C' dots) can serve as delivery vehicles to target both diagnostic and therapeutic radionuclides to melanoma cells for imaging and therapy. This review highlights the advances of MC1R- and VLA-4-targeted radiolabeled peptides and peptide-conjugated C' dots for melanoma imaging and therapy. The promising preclinical and clinical results of these new peptide radiopharmaceuticals present an optimistic outlook for clinical translation into receptor-targeting melanoma imaging and radionuclide therapy in the future.
Collapse
Affiliation(s)
- Yubin Miao
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Thomas P Quinn
- Department of Biochemistry, University of Missouri-Columbia, and Harry S. Truman Veterans' Hospital, Columbia, Missouri
| |
Collapse
|
15
|
Qiao Z, Xu J, Gonzalez R, Miao Y. Novel [ 99mTc]-Tricarbonyl-NOTA-Conjugated Lactam-Cyclized Alpha-MSH Peptide with Enhanced Melanoma Uptake and Reduced Renal Uptake. Mol Pharm 2020; 17:3581-3588. [PMID: 32663011 DOI: 10.1021/acs.molpharmaceut.0c00606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to examine the melanoma targeting and imaging properties of 99mTc(CO)3-NOTA-GGNle-CycMSHhex {1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid-GlyGlyNle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and 99mTc(CO)3-NODAGA-GGNle-CycMSHhex {1,4,7-triazacyclononane,1-gluteric acid-4,7-acetic acid-GlyGlyNle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} on B16/F10 melanoma-bearing C57 mice to demonstrate the feasibility of NOTA/NODAGA as metal chelators for 99mTc(CO)3+ radiolabeling. NOTA/NODAGA-GGNle-CycMSHhex were synthesized using fluorenylmethoxycarbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined on B16/F10 melanoma cells. The biodistribution of 99mTc(CO)3-NOTA-GGNle-CycMSHhex and 99mTc(CO)3-NODAGA-GGNle-CycMSHhex were determined on B16/F10 melanoma-bearing C57 mice at 2 h postinjection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of 99mTc(CO)3-NOTA-GGNle-CycMSHhex and 99mTc(CO)3-NODAGA-GGNle-CycMSHhex were determined on B16/F10 melanoma-bearing C57 mice. The IC50 values of NOTA/NODAGA-GGNle-CycMSHhex were 0.8 ± 0.1 and 0.9 ± 0.1 nM on B16/F10 cells. 99mTc(CO)3-NOTA-GGNle-CycMSHhex and 99mTc(CO)3-NODAGA-GGNle-CycMSHhex were readily prepared via the [99mTc(CO)3(OH2)3]+ intermediate and displayed MC1R-specific binding on B16/F10 cells. 99mTc(CO)3-NOTA-GGNle-CycMSHhex was further evaluated as a lead peptide because of its higher tumor uptake (19.76 ± 3.62% ID/g) and lower kidney uptake (1.59 ± 0.52% ID/g) at 2 h postinjection than 99mTc(CO)3-NODAGA-GGNle-CycMSHhex. The B16/F10 melanoma uptake of 99mTc(CO)3-NOTA-GGNle-CycMSHhex was 16.07 ± 4.47, 19.76 ± 3.62, 11.30 ± 2.81, and 3.16 ± 2.28% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. 99mTc(CO)3-NOTA-GGNle-CycMSHhex showed high tumor to normal organ uptake ratios after 2 h postinjection. The B16/F10 melanoma lesions were clearly visualized by SPECT/CT using 99mTc(CO)3-NOTA-GGNle-CycMSHhex as an imaging probe at 2 h postinjection. High tumor uptake, low kidney uptake, and fast urinary clearance of 99mTc(CO)3-NOTA-GGNle-CycMSHhex highlighted its potential for melanoma imaging and facilitated the evaluation of 188Re(CO)3-NOTA-GGNle-CycMSHhex for melanoma therapy.
Collapse
|
16
|
Zhang C, Zhang Z, Zeisler J, Colpo N, Lin KS, Bénard F. Selective Cyclized α-Melanocyte-Stimulating Hormone Derivative with Multiple N-Methylations for Melanoma Imaging with Positron Emission Tomography. ACS OMEGA 2020; 5:10767-10773. [PMID: 32455196 PMCID: PMC7240809 DOI: 10.1021/acsomega.0c00310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
In this study, we designed and evaluated a novel α-melanocyte-stimulating hormone derivative with four N-methylations for melanocortin 1 receptor-targeted melanoma imaging with positron emission tomography (PET). The resulting peptide, DOTA-Pip-Nle4-Cyclo[Asp5-N-Me-His6-d-Phe7-N-Me-Arg8-N-Me-Trp9-N-Me-Lys10]αMSH4-10-NH2 (CCZ01099), showed high receptor selectivity, greatly improved stability, and rapid internalization. [68Ga]Ga-CCZ01099 showed clear tumor visualization and excellent tumor-to-normal tissue contrast with PET imaging in a preclinical melanoma model. Therefore, CCZ01099 is a promising compound for imaging and potentially radioligand therapy for melanoma.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jutta Zeisler
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Nadine Colpo
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Kuo-Shyan Lin
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - François Bénard
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
17
|
Xu J, Yang J, Gonzalez R, Fisher DR, Miao Y. Melanoma-Targeting Property of Y-90-Labeled Lactam-Cyclized α-Melanocyte-Stimulating Hormone Peptide. Cancer Biother Radiopharm 2019; 34:597-603. [PMID: 31644317 DOI: 10.1089/cbr.2019.3049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose: The purpose of this study was to evaluate melanoma-targeting property of 90Y-DOTA-GGNle-CycMSHhex to facilitate its potential therapeutic application. Materials and Methods: DOTA-GGNle-CycMSHhex was synthesized and readily labeled with 90Y in 0.25 M NH4Ac-buffered solution to generate 90Y-DOTA-GGNle-CycMSHhex. The specific receptor binding, internalization, and efflux of 90Y-DOTA-GGNle-CycMSHhex were determined on B16/F10 murine melanoma cells. The biodistribution property of 90Y-DOTA-GGNle-CycMSHhex was examined on B16/F10 melanoma-bearing C57 mice. Results: 90Y-DOTA-GGNle-CycMSHhex displayed receptor-specific binding, rapid internalization, and prolonged efflux on B16/F10 melanoma cells. 90Y-DOTA-GGNle-CycMSHhex exhibited high uptake and prolonged retention in melanoma, and fast urinary clearance on B16/F10 melanoma-bearing C57 mice. The B16/F10 tumor uptake was 20.73% ± 7.99%, 19.93% ± 5.73%, 14.8% ± 4.61%, and 6.69% ± 1.85% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. Conclusions: 90Y-DOTA-GGNle-CycMSHhex displayed melanocortin-1 receptor (MC1R) targeting and specificity on B16/F10 melanoma cells and tumors. The favorable melanoma-targeting property and fast urinary clearance of 90Y-DOTA-GGNle-CycMSHhex warranted its evaluation for melanoma therapy in future studies.
Collapse
Affiliation(s)
- Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, Colorado
| | - Jianquan Yang
- Department of Radiology, University of Colorado Denver, Aurora, Colorado
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - Darrell R Fisher
- Versant Medical Physics and Radiation Safety, Richland, Washington
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
18
|
Yang J, Xu J, Cheuy L, Gonzalez R, Fisher DR, Miao Y. Evaluation of a Novel Pb-203-Labeled Lactam-Cyclized Alpha-Melanocyte-Stimulating Hormone Peptide for Melanoma Targeting. Mol Pharm 2019; 16:1694-1702. [PMID: 30763112 PMCID: PMC6443429 DOI: 10.1021/acs.molpharmaceut.9b00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study is to examine the melanocortin-1 receptor (MC1R) targeting and specificity of 203Pb-DOTA-GGNle-CycMSHhex in melanoma cells and tumors to facilitate its potential therapeutic application when labeled with 212Pb. The MC1R-specific targeting and imaging properties of 203Pb-DOTA-GGNle-CycMSHhex were determined on B16/F1 and B16/F10 murine melanoma cells and in B16/F1 flank melanoma-, B16/F10 flank melanoma-, and B16/F10 pulmonary metastatic melanoma-bearing C57 mice. 203Pb-DOTA-GGNle-CycMSHhex displayed MC1R-specific binding on B16/F1 and B16/F10 melanoma cells and tumors. B16/F1 flank melanoma, B16/F10 flank melanoma, and B16/F10 pulmonary metastatic melanoma lesions could be clearly imaged by single photon emission computed tomography (SPECT) using 203Pb-DOTA-GGNle-CycMSHhex as an imaging probe. The favorable melanoma targeting and imaging properties highlighted the potential of 203Pb-DOTA-GGNle-CycMSHhex as a MC1R-targeting melanoma imaging probe and warranted the evaluation of 212Pb-DOTA-GGNle-CycMSHhex for melanoma therapy in future studies.
Collapse
Affiliation(s)
- Jianquan Yang
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Lina Cheuy
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Darrell R. Fisher
- Versant Medical Physics and Radiation Safety, Richland, WA 99354, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
19
|
Yang J, Xu J, Gonzalez R, Lindner T, Kratochwil C, Miao Y. 68Ga-DOTA-GGNle-CycMSH hex targets the melanocortin-1 receptor for melanoma imaging. Sci Transl Med 2018; 10:eaau4445. [PMID: 30404861 PMCID: PMC6383514 DOI: 10.1126/scitranslmed.aau4445] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Melanocortin-1 receptor (MC1R) is a molecular target for melanoma imaging and therapy because of its overexpression on rodent and human melanoma cells. Here, we evaluated the MC1R targeting and specificity of 68Ga-DOTA-GGNle-CycMSHhex and Cy5.5-GGNle-CycMSHhex using murine and human melanoma cells, and murine and xenografted tumors. 68Ga-DOTA-GGNle-CycMSHhex was used first in human as an imaging probe to evaluate the possibility of radionuclide therapy in patients with advanced-stage melanoma. 68Ga-DOTA-GGNle-CycMSHhex and Cy5.5-GGNle-CycMSHhex displayed MC1R-specific targeting properties in murine and human melanoma cells, as well as in murine melanoma and human melanoma-xenografted tumors. Both B16/F10 and M21 melanoma lesions could be easily imaged by positron emission tomography using 68Ga-DOTA-GGNle-CycMSHhex The first-in-human images of melanoma brain metastases in patients demonstrated the clinical relevance of MC1R as a molecular target for melanoma imaging, highlighting the potential of 68Ga-DOTA-GGNle-CycMSHhex as an MC1R-targeting melanoma imaging probe and underscoring the need to develop MC1R-targeting therapeutic agents for treating patients with metastatic melanoma.
Collapse
Affiliation(s)
- Jianquan Yang
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Thomas Lindner
- Department of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
20
|
Zhang C, Lin KS, Bénard F. Molecular Imaging and Radionuclide Therapy of Melanoma Targeting the Melanocortin 1 Receptor. Mol Imaging 2018; 16:1536012117737919. [PMID: 29182034 PMCID: PMC5714078 DOI: 10.1177/1536012117737919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Melanoma is a deadly disease at late metastatic stage, and early diagnosis and accurate staging remain the key aspects for managing melanoma. The melanocortin 1 receptor (MC1 R) is overexpressed in primary and metastatic melanomas, and its endogenous ligand, the α-melanocyte-stimulating hormone (αMSH), has been extensively studied for the development of MC1 R-targeted molecular imaging and therapy of melanoma. Natural αMSH is not well suited for this purpose due to low stability in vivo. Unnatural amino acid substitutions substantially stabilized the peptide, while cyclization via lactam bridge and metal coordination further improved binding affinity and stability. In this study, we summarized the development and the in vitro and in vivo characteristics of the radiolabeled αMSH analogues, including 99mTc-, 111In-, 67 Ga-, or 125I-labeled αMSH analogues for imaging with single-photon emission computed tomography; 68Ga-, 64Cu-, or 18F-labeled αMSH analogues for imaging with positron emission tomography; and 188Re-, 177Lu-, 90Y-, or 212Pb-labeled αMSH analogues for radionuclide therapy. These radiolabeled αMSH analogues showed promising results with high tumor uptake and rapid normal tissue activity clearance in the preclinical model of B16F1 and B16F10 mouse melanomas. These results highlight the potential of using radiolabeled αMSH analogues in clinical applications for molecular imaging and radionuclide therapy of melanoma.
Collapse
Affiliation(s)
- Chengcheng Zhang
- 1 Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Kuo-Shyan Lin
- 1 Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada.,2 Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - François Bénard
- 1 Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada.,2 Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Allen KJH, Jiao R, Malo ME, Dadachova E. Evaluation of N-Succinimidyl S-Acetylthioacetate Ligand for Radiolabeling of Humanized Antibodies with 188Rhenium. Cancer Biother Radiopharm 2018; 33:349-355. [PMID: 30010404 DOI: 10.1089/cbr.2018.2480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Radioimmunotherapy offers an effective way to direct ionizing radiation to cancer cells through attachment of radionuclides to antibodies while limiting negative effects of off-target irradiation. This, however, requires effective facile methods for attachment of therapeutic radionuclides onto antibodies. Herein, the authors report their efforts in evaluating N-succinimidyl S-acetylthioacetate (SATA), a commercially available reagent, for use as a bifunctional chelating agent (BCA) to attach 188Rhenium (188Re) onto h8C3, a humanized IgG antibody that can effectively target extracellular melanin present in malignant melanoma. Micro single photon emission computer tomography/computer tomography was used to determine an effective timeline for antibody uptake in B16-F10 tumor bearing C57BL6 mice guiding the selection of 188Re with its 16.9 h physical half-life. Radio instant thin layer chromatography coupled with radio high-performance liquid chromatography was used to assess radioisotope incorporation, as well as stability during the labeling process for SATA conjugated h8C3. It was determined that despite the relatively mild conditions used, incorporation of the SATA conjugate resulted in antibody instability during labeling requiring a different BCA to facilitate rhenium incorporation onto the antibodies.
Collapse
Affiliation(s)
- Kevin J H Allen
- Department of Pharmacy and Nutrition, University of Saskatchewan , Saskatoon, Canada
| | - Rubin Jiao
- Department of Pharmacy and Nutrition, University of Saskatchewan , Saskatoon, Canada
| | - Mackenzie E Malo
- Department of Pharmacy and Nutrition, University of Saskatchewan , Saskatoon, Canada
| | - Ekaterina Dadachova
- Department of Pharmacy and Nutrition, University of Saskatchewan , Saskatoon, Canada
| |
Collapse
|
22
|
Computer-aided design, synthesis, and biological studies of anticological nitrogen-containing tetraphosphonic acids against melanoma. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Zhang C, Zhang Z, Lin KS, Lau J, Zeisler J, Colpo N, Perrin DM, Bénard F. Melanoma Imaging Using 18F-Labeled α-Melanocyte-Stimulating Hormone Derivatives with Positron Emission Tomography. Mol Pharm 2018; 15:2116-2122. [PMID: 29714486 DOI: 10.1021/acs.molpharmaceut.7b01113] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Melanocortin 1 receptor (MC1R) is specifically expressed in the majority of melanomas, a leading cause of death related to skin cancers. Accurate staging and early detection is crucial in managing melanoma. Based on the α-melanocyte-stimulating hormone (αMSH) sequence, MC1R-targeted peptides have been studied for melanoma imaging, predominately for use with single-photon emission computed tomography, with few attempts made for positron emission tomography (PET). 18F is a commonly used PET isotope due to readily available cyclotron production, pure positron emission, and a favorable half-life (109.8 min). In this study, we aim to design and evaluate αMSH derivatives that enable radiolabeling with 18F for PET imaging of melanoma. We synthesized three imaging probes based on the structure of Nle4-cyclo[Asp5-His-d-Phe7-Arg-Trp-Lys10]-NH2 (Nle-CycMSHhex), with a Pip linker (CCZ01064), an Acp linker (CCZ01070), or an Aoc linker (CCZ01071). 18F labeling was enabled by an ammoniomethyl-trifluoroborate (AmBF3) moiety. In vitro competition binding assays showed subnanomolar inhibition constant ( Ki) values for all three peptides. The 18F radiolabeling was performed via a one-step 18F-19F isotope exchange reaction that resulted in high radiochemical purity (>95%) and good molar activity (specific activity) ranging from 40.7 to 66.6 MBq/nmol. All three 18F-labeled peptides produced excellent tumor visualization with PET imaging in C57BL/6J mice bearing B16-F10 tumors. The tumor uptake was 7.80 ± 1.77, 5.27 ± 2.38, and 5.46 ± 2.64% injected dose per gram of tissue (%ID/g) for [18F]CCZ01064, [18F]CCZ01070, and [18F]CCZ01071 at 1 h post-injection (p.i.), respectively. Minimal background activity was observed except for kidneys at 4.99 ± 0.20, 4.42 ± 0.54, and 13.55 ± 2.84%ID/g, respectively. The best candidate [18F]CCZ01064 was further evaluated at 2 h p.i., which showed increased tumor uptake at 11.96 ± 2.31%ID/g and further reduced normal tissue uptake. Moreover, a blocking study was performed for CCZ01064 at 1 h p.i., where tumor uptake was significantly reduced to 1.97 ± 0.60%ID/g, suggesting the tumor uptake was receptor mediated. In conclusion, [18F]CCZ01064 showed high tumor uptake, low normal tissue uptake, and fast clearance and is therefore a suitable and promising candidate for PET imaging of melanoma.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Joseph Lau
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Jutta Zeisler
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Nadine Colpo
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | | | - François Bénard
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| |
Collapse
|
24
|
Wei W, Ehlerding EB, Lan X, Luo Q, Cai W. PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 2018; 45:132-150. [PMID: 29085965 PMCID: PMC5700861 DOI: 10.1007/s00259-017-3839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
25
|
Zhang C, Zhang Z, Lin KS, Pan J, Dude I, Hundal-Jabal N, Colpo N, Bénard F. Preclinical Melanoma Imaging with 68Ga-Labeled α-Melanocyte-Stimulating Hormone Derivatives Using PET. Theranostics 2017; 7:805-813. [PMID: 28382155 PMCID: PMC5381245 DOI: 10.7150/thno.17117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/10/2016] [Indexed: 01/09/2023] Open
Abstract
It is estimated that melanoma accounted for 76,380 new cases and 10,130 deaths in the United States in 2016. The melanocortin 1 receptor (MC1R) is highly expressed in the vast majority of melanomas, which makes it an attractive target for molecular imaging and radionuclide therapy. Lactam bridge-cyclized α-melanocyte-stimulating hormone (Ac-Nle4-cyclo[Asp5-His-D-Phe7-Arg-Trp-Lys10]-NH2, or Nle-CycMSHhex) analogues have been successfully developed and studied for MC1R-targeted imaging, predominantly with single-photon emission computed tomography (SPECT). The goal of this study was to design and evaluate novel peptides for melanoma imaging with positron emission tomography (PET). We designed and synthesized three peptides, DOTA-PEG2-Nle-CycMSHhex (CCZ01047), DOTA-4-amino-(1-carboxymethyl) piperidine (Pip)-Nle-CycMSHhex (CCZ01048), and DOTA-Pip-Pip-Nle-CycMSHhex (CCZ01056). All three peptides exhibited high binding affinity to MC1R with sub-nanomolar Ki values, rapid internalization into B16F10 melanoma cells and high in vivo stability with more than 93% remaining intact at 15 min post-injection (p.i.) in blood plasma. All three 68Ga-labeled tracers produced high contrast PET images in C57BL/6J mice bearing B16F10 tumors, and their respective tumor uptakes were 8.0 ± 3.0, 12.3 ± 3.3, and 6.5 ± 1.4 %ID/g at 1 h p.i. Minimal normal organ activity was observed at 1 h p.i., except for kidneys (5.1 ± 1.4, 4.7 ± 0.5, and 6.2 ± 2.0 %ID/g, respectively), and thyroid (4.1 ± 0.6 %ID/g for CCZ01047 and 2.4 ± 0.6 %ID/g for CCZ01048). Due to high accumulation at tumor sites and rapid background clearance of 68Ga-CCZ01048, we further evaluated it at 2 h p.i., and a tumor uptake of 21.9 ± 4.6 %ID/g was observed, with background activity further decreased. Exceptional image contrast was also achieved, i.e. tumor-to-blood, tumor-to-muscle, tumor-to-bone and tumor-to-kidney ratios were 96.4 ± 13.9, 210.9 ± 20.9, 39.6 ± 11.9 and 4.0 ± 0.9, respectively. A blocking study was also performed by co-injection of excess amount of non-radioactive Ga-coupled of CCZ01048, which confirmed that the tumor uptake was MC1R mediated. In conclusion, the introduction of a cationic Pip linker to Nle-CycMSHhex, CCZ01048, not only improved tumor uptake, but also generated high tumor-to-normal tissue contrast with PET imaging in a preclinical melanoma model. Therefore, CCZ01048 is a promising candidate for PET imaging of melanoma, and potentially as a theranostic agent for radionuclide therapy of melanoma when labeled with α or β emitters.
Collapse
|
26
|
Dash A, Pillai MRA, Knapp FF. Production of (177)Lu for Targeted Radionuclide Therapy: Available Options. Nucl Med Mol Imaging 2015; 49:85-107. [PMID: 26085854 DOI: 10.1007/s13139-014-0315-z] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND This review provides a comprehensive summary of the production of (177)Lu to meet expected future research and clinical demands. Availability of options represents the cornerstone for sustainable growth for the routine production of adequate activity levels of (177)Lu having the required quality for preparation of a variety of (177)Lu-labeled radiopharmaceuticals. The tremendous prospects associated with production of (177)Lu for use in targeted radionuclide therapy (TRT) dictate that a holistic consideration should evaluate all governing factors that determine its success. METHODS While both "direct" and "indirect" reactor production routes offer the possibility for sustainable (177)Lu availability, there are several issues and challenges that must be considered to realize the full potential of these production strategies. RESULTS This article presents a mini review on the latest developments, current status, key challenges and possibilities for the near future. CONCLUSION A broad understanding and discussion of the issues associated with (177)Lu production and processing approaches would not only ensure sustained growth and future expansion for the availability and use of (177)Lu-labeled radiopharmaceuticals, but also help future developments.
Collapse
Affiliation(s)
- Ashutosh Dash
- Isotope Production and Applications Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai 400 085 India
| | | | - Furn F Knapp
- Medical Isotopes Program, Isotope Development Group, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, MS 6229, Bldg, 4501, 1 Bethel Valley Road,, Oak Ridge, TN 37831-6229 USA
| |
Collapse
|
27
|
Girgis AS, Panda SS, Srour AM, Farag H, Ismail NSM, Elgendy M, Abdel-Aziz AK, Katritzky AR. Rational design, synthesis and molecular modeling studies of novel anti-oncological alkaloids against melanoma. Org Biomol Chem 2015; 13:6619-33. [DOI: 10.1039/c5ob00410a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anti-oncological active spiro-alkaloids were synthesized exhibiting promising antitumor properties against melanoma cell lines. Molecular modeling studies describe the observed properties.
Collapse
Affiliation(s)
- Adel S. Girgis
- Pesticide Chemistry Department
- National Research Centre
- Dokki
- Egypt
| | - Siva S. Panda
- Center for Heterocyclic Compounds
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| | - Aladdin M. Srour
- Therapeutical Chemistry Department
- National Research Centre
- Dokki
- Egypt
| | - Hanaa Farag
- Pesticide Chemistry Department
- National Research Centre
- Dokki
- Egypt
| | - Nasser S. M. Ismail
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Ain Shams University
- Cairo
- Egypt
| | - Mohamed Elgendy
- Department of Experimental Oncology at the IFOM-IEO Campus
- European Institute of Oncology
- 20139 Milan
- Italy
| | - Amal K. Abdel-Aziz
- Pharmacology and Toxicology Department
- Faculty of Pharmacy
- Ain Shams University
- Cairo
- Egypt
| | - Alan R. Katritzky
- Center for Heterocyclic Compounds
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| |
Collapse
|