1
|
Lian S, Du Z, Chen Q, Xia Y, Miao X, Yu W, Sun Q, Feng C. From lab to clinic: The discovery and optimization journey of PI3K inhibitors. Eur J Med Chem 2024; 277:116786. [PMID: 39180946 DOI: 10.1016/j.ejmech.2024.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
PI3K inhibitors have emerged as promising therapeutic agents due to their critical role in various cellular processes, particularly in cancer, where the PI3K pathway is frequently dysregulated. This review explores the evolutionary path of PI3K inhibitors from laboratory discovery to clinical application. The journey begins with early laboratory investigations into PI3K signaling and inhibitor development, highlighting fundamental discoveries that laid the foundation for subsequent advancements. Optimization strategies, including medicinal chemistry approaches and structural modifications, are scrutinized for their contributions to enhancing inhibitor potency, selectivity, and pharmacokinetic properties. The translation from preclinical studies to clinical trials is examined, emphasizing pivotal trials that evaluated efficacy and safety profiles. Challenges encountered during clinical development are critically assessed. Finally, the review discusses ongoing research directions and prospects for PI3K inhibitors, underscoring these agents' continuous evolution and therapeutic potential.
Collapse
Affiliation(s)
- Siyu Lian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenhua Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingqing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinxin Miao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weiwei Yu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qian Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Chong Feng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Halder D, Das S, Jeyaprakash RS. Identification of natural product as selective PI3Kα inhibitor against NSCLC: multi-ligand pharmacophore modeling, molecular docking, ADME, DFT, and MD simulations. Mol Divers 2024; 28:2983-3010. [PMID: 37715109 DOI: 10.1007/s11030-023-10727-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a widespread and often aggressive form of cancer affecting people worldwide. PIK3CA missense mutations play a significant role in the progression of growth factor signaling in cancer, making PI3Kα an important biological target for inhibition against NSCLC. Natural product molecules with PI3Kα inhibitory activity are promising therapeutic agents for the treatment of NSCLC, owing to their selectivity and potentially lower toxicity compared to synthetic compounds. To discover new natural product molecules, we integrated ligand-based virtual screening with structure-based virtual screening. We developed a multi-ligand pharmacophore hypothesis, validated it with 3D Field-based QSAR, and screened a Natural-Product-Based Library (ChemDiv) containing 3601 molecules. After initial screening, 137 hit molecules were generated and further screened using the extra precision (XP) Glide docking protocol. The best ten molecules were selected for free binding energy (ΔG) analysis using MMGBSA and ADME predictions. For further optimization, the top four hits were subjected to induced fit docking (IFD), quantum chemical descriptors analysis by Frontier Molecular Orbital (FMO) studies, and a 100 ns molecular dynamics (MD) simulation. The compounds-S721-1955, CM4579-5085, S721-1963, and S721-1999-exhibited better results than the PI3Kα selective inhibitor alpelisib. In silico prediction analysis of S721-1955 and alpelisib revealed that the former exhibited superior selectivity theoretically, as evidenced by its higher affinity for the target protein. The selective natural product molecule identified in this study holds promise as a potential anti-cancer drug against NSCLC in the near future, but further in vitro and in vivo studies are necessary to confirm its efficacy.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - R S Jeyaprakash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Bastos IM, Rebelo S, Silva VLM. A comprehensive review on phosphatidylinositol-3-kinase (PI3K) and its inhibitors bearing pyrazole or indazole core for cancer therapy. Chem Biol Interact 2024; 398:111073. [PMID: 38823538 DOI: 10.1016/j.cbi.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Cancer is a complex and multifaceted group of diseases with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. Dysregulation of normal signalling pathways in cancer contributes to the different hallmarks of this disease. The signalling pathway of which phosphatidylinositol 3-kinase (PI3K) is a part is not an exception. In fact, dysregulated activation of PI3K signalling pathways can result in unbridled cellular proliferation and enhanced cell survival, thereby fostering the onset and advancement of cancer. Therefore, there is substantial interest in developing targeted therapies specifically aimed at inhibiting the PI3K enzyme and its associated pathways. Also, the therapeutic interest on pyrazoles and indazoles has been growing due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as PI3K inhibitors, and they showed promising results. There are already some PI3K inhibitors approved by Food and Drug Administration (FDA), such as Idelalisib (Zydelig®) and Alpelisib (Piqray®). In this context, this review aims to address the importance of PI3K in cellular processes and its role in cancer. Additionally, it aims to report a comprehensive literature review of PI3K inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PI3K inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
4
|
Al-Mustafa A, Al-Zereini W, Ashram M, Al-Sha’er MA. Evaluation of antibacterial, antioxidant, cytotoxic, and acetylcholinesterase inhibition activities of novel [1,4] benzoxazepines fused to heterocyclic systems with a molecular modeling study. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Zhang M, Jang H, Nussinov R. PI3K inhibitors: review and new strategies. Chem Sci 2020; 11:5855-5865. [PMID: 32953006 PMCID: PMC7472334 DOI: 10.1039/d0sc01676d] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
The search is on for effective specific inhibitors for PI3Kα mutants. PI3Kα, a critical lipid kinase, has two subunits, catalytic and inhibitory. PIK3CA, the gene that encodes the p110α catalytic subunit is a highly mutated protein in cancer. Dysregulation of PI3Kα signalling is commonly associated with tumorigenesis and drug resistance. Despite its vast importance, only recently the FDA approved the first drug (alpelisib by Novartis) for breast cancer. A second (GDC0077), classified as PI3Kα isoform-specific, is undergoing clinical trials. Not surprisingly, these ATP-competitive drugs commonly elicit severe concentration-dependent side effects. Here we briefly review PI3Kα mutations, focus on PI3K drug repertoire and propose new, to-date unexplored PI3Kα therapeutic strategies. These include (1) an allosteric and orthosteric inhibitor combination and (2) taking advantage of allosteric rescue mutations to guide drug discovery.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section , Frederick National Laboratory for Cancer Research , National Cancer Institute at Frederick , Frederick , MD 21702 , USA . ; Tel: +1-301-846-5579
| | - Hyunbum Jang
- Computational Structural Biology Section , Frederick National Laboratory for Cancer Research , National Cancer Institute at Frederick , Frederick , MD 21702 , USA . ; Tel: +1-301-846-5579
| | - Ruth Nussinov
- Computational Structural Biology Section , Frederick National Laboratory for Cancer Research , National Cancer Institute at Frederick , Frederick , MD 21702 , USA . ; Tel: +1-301-846-5579
- Department of Human Molecular Genetics and Biochemistry , Sackler School of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
| |
Collapse
|
6
|
Liu X, Liang X, LeCouter J, Ubhayakar S, Chen J, Cheng J, Lee T, Lubach J, Nonomiya J, Shahidi-Latham S, Quiason C, Solon E, Wright M, Hop CECA, Heffron TP. Characterization of Antineovascularization Activity and Ocular Pharmacokinetics of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GNE-947. Drug Metab Dispos 2020; 48:408-419. [PMID: 32132091 DOI: 10.1124/dmd.119.089763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/19/2020] [Indexed: 11/22/2022] Open
Abstract
The objectives of the present study were to characterize GNE-947 for its phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitory activities, in vitro anti-cell migration activity in human umbilical vein endothelial cells (HUVECs), in vivo antineovascularization activity in laser-induced rat choroidal neovascular (CNV) eyes, pharmacokinetics in rabbit plasma and eyes, and ocular distribution using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) and autoradioluminography. Its PI3K and mTOR K i were 0.0005 and 0.045 µM, respectively, and its HUVEC IC50 was 0.093 µM. GNE-947 prevented neovascularization in the rat CNV model at 50 or 100 µg per eye with repeat dosing. After a single intravenous injection at 2.5 and 500 μg/kg in rabbits, its plasma terminal half-lives (t 1/2) were 9.11 and 9.59 hours, respectively. After a single intravitreal injection of a solution at 2.5 μg per eye in rabbits, its apparent t 1/2 values were 14.4, 16.3, and 23.2 hours in the plasma, vitreous humor, and aqueous humor, respectively. After a single intravitreal injection of a suspension at 33.5, 100, 200 μg per eye in rabbits, the t 1/2 were 29, 74, and 219 days in the plasma and 46, 143, and 191 days in the eyes, respectively. MALDI-IMS and autoradioluminography images show that GNE-947 did not homogenously distribute in the vitreous humor and aggregated at the injection sites after injection of the suspension, which was responsible for the long t 1/2 of the suspension because of the slow dissolution process. This hypothesis was supported by pharmacokinetic modeling analyses. In conclusion, the PI3K/mTOR inhibitor GNE-947 prevented neovascularization in a rat CNV model, with t 1/2 up to approximately 6 months after a single intravitreal injection of the suspension in rabbit eyes. SIGNIFICANCE STATEMENT: GNE-947 is a potent phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor and exhibits anti-choroidal neovascular activity in rat eyes. The duration of GNE-947 in the rabbit eyes after intravitreal injection in a solution is short, with a half-life (t 1/2) of less than a day. However, the duration after intravitreal dose of a suspension is long, with t 1/2 up to 6 months due to low solubility and slow dissolution. These results indicate that intravitreal injection of a suspension for low-solubility drugs can be used to achieve long-term drug exposure.
Collapse
Affiliation(s)
- Xingrong Liu
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Xiaorong Liang
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Jenninfer LeCouter
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Savita Ubhayakar
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Jacob Chen
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Jay Cheng
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Tom Lee
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Joe Lubach
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Jim Nonomiya
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Sheerin Shahidi-Latham
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Cristine Quiason
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Eric Solon
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Matthew Wright
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Cornelis E C A Hop
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Timothy P Heffron
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| |
Collapse
|
7
|
St-Jean F, Remarchuk T, Angelaud R, Carrera DE, Beaudry D, Malhotra S, McClory A, Kumar A, Ohlenbusch G, Schuster AM, Gosselin F. Manufacture of the PI3K β-Sparing Inhibitor Taselisib. Part 2: Development of a Highly Efficient and Regioselective Late-Stage Process. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frédéric St-Jean
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Travis Remarchuk
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rémy Angelaud
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Diane E. Carrera
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Danial Beaudry
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sushant Malhotra
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Andrew McClory
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Archana Kumar
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Gerd Ohlenbusch
- Small Molecules Technical Development PTDC-C, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas M. Schuster
- Small Molecules Technical Development PTDC-C, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Miller MS, Thompson PE, Gabelli SB. Structural Determinants of Isoform Selectivity in PI3K Inhibitors. Biomolecules 2019; 9:biom9030082. [PMID: 30813656 PMCID: PMC6468644 DOI: 10.3390/biom9030082] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/21/2019] [Indexed: 01/17/2023] Open
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are important therapeutic targets for the treatment of cancer, thrombosis, and inflammatory and immune diseases. The four highly homologous Class I isoforms, PI3K, PI3K, PI3K and PI3K have unique, non-redundant physiological roles and as such, isoform selectivity has been a key consideration driving inhibitor design and development. In this review, we discuss the structural biology of PI3Ks and how our growing knowledge of structure has influenced the medicinal chemistry of PI3K inhibitors. We present an analysis of the available structure-selectivity-activity relationship data to highlight key insights into how the various regions of the PI3K binding site influence isoform selectivity. The picture that emerges is one that is far from simple and emphasizes the complex nature of protein-inhibitor binding, involving protein flexibility, energetics, water networks and interactions with non-conserved residues.
Collapse
Affiliation(s)
- Michelle S Miller
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Departments of Medicine, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Garces AE, Stocks MJ. Class 1 PI3K Clinical Candidates and Recent Inhibitor Design Strategies: A Medicinal Chemistry Perspective. J Med Chem 2018; 62:4815-4850. [DOI: 10.1021/acs.jmedchem.8b01492] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Aimie E. Garces
- Centre for Biomolecular Sciences, University Park Nottingham, Nottingham NG7 2RD, U.K
| | - Michael J. Stocks
- Centre for Biomolecular Sciences, University Park Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
10
|
Virelli M, Moroni E, Colombo G, Fiengo L, Porta A, Ackermann L, Zanoni G. Expedient Access to 2-Benzazepines by Palladium-Catalyzed C−H Activation: Identification of a Unique Hsp90 Inhibitor Scaffold. Chemistry 2018; 24:16516-16520. [DOI: 10.1002/chem.201804244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Matteo Virelli
- Department of Chemistry; University of Pavia; Viale Taramelli 10 27100 Pavia Italy
| | | | - Giorgio Colombo
- Department of Chemistry; University of Pavia; Viale Taramelli 10 27100 Pavia Italy
- Istituto di Chimica del Riconoscimento Molecolare; CNR; Via Mario Bianco 9 20131 Milano Italy
| | - Lorenzo Fiengo
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II, 132 84084 Fisciano Italy
| | - Alessio Porta
- Department of Chemistry; University of Pavia; Viale Taramelli 10 27100 Pavia Italy
| | - Lutz Ackermann
- Department of Chemistry; University of Pavia; Viale Taramelli 10 27100 Pavia Italy
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Giuseppe Zanoni
- Department of Chemistry; University of Pavia; Viale Taramelli 10 27100 Pavia Italy
| |
Collapse
|
11
|
Liu Y, Wan WZ, Li Y, Zhou GL, Liu XG. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents. Oncotarget 2018; 8:7181-7200. [PMID: 27769061 PMCID: PMC5351699 DOI: 10.18632/oncotarget.12742] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022] Open
Abstract
Phosphatidylinostitol-3-kinase (PI3K) is the potential anticancer target in the PI3K/Akt/ mTOR pathway. Here we reviewed the ATP-competitive small molecule PI3K inhibitors in the past few years, including the pan Class I PI3K inhibitors, the isoform-specific PI3K inhibitors and/or the PI3K/mTOR dual inhibitors.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China.,Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
| | - Wen-Zhu Wan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Yan Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Guan-Lian Zhou
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
| |
Collapse
|
12
|
Safina BS, Elliott RL, Forrest AK, Heald RA, Murray JM, Nonomiya J, Pang J, Salphati L, Seward EM, Staben ST, Ultsch M, Wei B, Yang W, Sutherlin DP. Design of Selective Benzoxazepin PI3Kδ Inhibitors Through Control of Dihedral Angles. ACS Med Chem Lett 2017; 8:936-940. [PMID: 28947940 DOI: 10.1021/acsmedchemlett.7b00170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022] Open
Abstract
A novel selective benzoxazepin inhibitor of PI3Kδ has been discovered. Beginning from compound 3, an αPI3K inhibitor, we utilized structure-based drug design and computational analysis of dihedral torsion angles to optimize for PI3Kδ isoform potency and isoform selectivity. Further medicinal chemistry optimization of the series led to the identification of 24, a highly potent and selective inhibitor of PI3Kδ.
Collapse
Affiliation(s)
- Brian S. Safina
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard L. Elliott
- Discovery from Charles River, 8-9 Spire Green Centre, Harlow, Essex CM 19 5TR, United Kingdom
| | - Andrew K. Forrest
- Discovery from Charles River, 8-9 Spire Green Centre, Harlow, Essex CM 19 5TR, United Kingdom
| | - Robert A. Heald
- Discovery from Charles River, 8-9 Spire Green Centre, Harlow, Essex CM 19 5TR, United Kingdom
| | - Jeremy M. Murray
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jim Nonomiya
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jodie Pang
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Laurent Salphati
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eileen M. Seward
- Discovery from Charles River, 8-9 Spire Green Centre, Harlow, Essex CM 19 5TR, United Kingdom
| | - Steven T. Staben
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mark Ultsch
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Binqing Wei
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wenqian Yang
- ChemPartner, 998 Halei Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Daniel P. Sutherlin
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
13
|
Castanedo GM, Blaquiere N, Beresini M, Bravo B, Brightbill H, Chen J, Cui HF, Eigenbrot C, Everett C, Feng J, Godemann R, Gogol E, Hymowitz S, Johnson A, Kayagaki N, Kohli PB, Knüppel K, Kraemer J, Krüger S, Loke P, McEwan P, Montalbetti C, Roberts DA, Smith M, Steinbacher S, Sujatha-Bhaskar S, Takahashi R, Wang X, Wu LC, Zhang Y, Staben ST. Structure-Based Design of Tricyclic NF-κB Inducing Kinase (NIK) Inhibitors That Have High Selectivity over Phosphoinositide-3-kinase (PI3K). J Med Chem 2017; 60:627-640. [PMID: 28005357 DOI: 10.1021/acs.jmedchem.6b01363] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report here structure-guided optimization of a novel series of NF-κB inducing kinase (NIK) inhibitors. Starting from a modestly potent, low molecular weight lead, activity was improved by designing a type 11/2 binding mode that accessed a back pocket past the methionine-471 gatekeeper. Divergent binding modes in NIK and PI3K were exploited to dampen PI3K inhibition while maintaining NIK inhibition within these series. Potent compounds were discovered that selectively inhibit the nuclear translocation of NF-κB2 (p52/REL-B) but not canonical NF-κB1 (REL-A/p50).
Collapse
Affiliation(s)
| | - Nicole Blaquiere
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Maureen Beresini
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Brandon Bravo
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Hans Brightbill
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Jacob Chen
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Hai-Feng Cui
- Pharmaron Beijing Co., Ltd . 6 Taihe Road, BDA, Beijing 100176, P.R. China
| | - Charles Eigenbrot
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Christine Everett
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianwen Feng
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert Godemann
- Manfred Eigen Campus, Evotec AG , Essener Bogen, 22419 Hamburg, Germany
| | - Emily Gogol
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Sarah Hymowitz
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Adam Johnson
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Nobuhiko Kayagaki
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Pawan Bir Kohli
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Kathleen Knüppel
- Manfred Eigen Campus, Evotec AG , Essener Bogen, 22419 Hamburg, Germany
| | - Joachim Kraemer
- Manfred Eigen Campus, Evotec AG , Essener Bogen, 22419 Hamburg, Germany
| | - Susan Krüger
- Manfred Eigen Campus, Evotec AG , Essener Bogen, 22419 Hamburg, Germany
| | - Pui Loke
- Evotec (U.K.) Ltd , 114 Innovation Drive, Milton Park, Abingdon OX14 4Rz, U.K
| | - Paul McEwan
- Evotec (U.K.) Ltd , 114 Innovation Drive, Milton Park, Abingdon OX14 4Rz, U.K
| | | | - David A Roberts
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Myron Smith
- Evotec (U.K.) Ltd , 114 Innovation Drive, Milton Park, Abingdon OX14 4Rz, U.K
| | - Stefan Steinbacher
- Proteros Biostructures GmbH , Bunsenstrasse 7a, D-82152 Martinsried, Germany
| | | | - Ryan Takahashi
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaolu Wang
- Manfred Eigen Campus, Evotec AG , Essener Bogen, 22419 Hamburg, Germany
| | - Lawren C Wu
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Yamin Zhang
- Pharmaron Beijing Co., Ltd . 6 Taihe Road, BDA, Beijing 100176, P.R. China
| | - Steven T Staben
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
14
|
Heffron TP, Heald RA, Ndubaku C, Wei B, Augistin M, Do S, Edgar K, Eigenbrot C, Friedman L, Gancia E, Jackson PS, Jones G, Kolesnikov A, Lee LB, Lesnick JD, Lewis C, McLean N, Mörtl M, Nonomiya J, Pang J, Price S, Prior WW, Salphati L, Sideris S, Staben ST, Steinbacher S, Tsui V, Wallin J, Sampath D, Olivero AG. The Rational Design of Selective Benzoxazepin Inhibitors of the α-Isoform of Phosphoinositide 3-Kinase Culminating in the Identification of (S)-2-((2-(1-Isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326). J Med Chem 2016; 59:985-1002. [PMID: 26741947 DOI: 10.1021/acs.jmedchem.5b01483] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inhibitors of the class I phosphoinositide 3-kinase (PI3K) isoform PI3Kα have received substantial attention for their potential use in cancer therapy. Despite the particular attraction of targeting PI3Kα, achieving selectivity for the inhibition of this isoform has proved challenging. Herein we report the discovery of inhibitors of PI3Kα that have selectivity over the other class I isoforms and all other kinases tested. In GDC-0032 (3, taselisib), we previously minimized inhibition of PI3Kβ relative to the other class I insoforms. Subsequently, we extended our efforts to identify PI3Kα-specific inhibitors using PI3Kα crystal structures to inform the design of benzoxazepin inhibitors with selectivity for PI3Kα through interactions with a nonconserved residue. Several molecules selective for PI3Kα relative to the other class I isoforms, as well as other kinases, were identified. Optimization of properties related to drug metabolism then culminated in the identification of the clinical candidate GDC-0326 (4).
Collapse
Affiliation(s)
- Timothy P Heffron
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert A Heald
- Argenta , Early Discovery Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, EssexCM19 5TR, United Kingdom
| | - Chudi Ndubaku
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - BinQing Wei
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Martin Augistin
- Proteros Biostructures GmbH , Bunsenstr. 7aD, 82152 Martinsried, Germany
| | - Steven Do
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Kyle Edgar
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Charles Eigenbrot
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Lori Friedman
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Emanuela Gancia
- Argenta , Early Discovery Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, EssexCM19 5TR, United Kingdom
| | - Philip S Jackson
- Argenta , Early Discovery Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, EssexCM19 5TR, United Kingdom
| | - Graham Jones
- Argenta , Early Discovery Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, EssexCM19 5TR, United Kingdom
| | | | - Leslie B Lee
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - John D Lesnick
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Cristina Lewis
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Neville McLean
- Argenta , Early Discovery Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, EssexCM19 5TR, United Kingdom
| | - Mario Mörtl
- Proteros Biostructures GmbH , Bunsenstr. 7aD, 82152 Martinsried, Germany
| | - Jim Nonomiya
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jodie Pang
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Steve Price
- Argenta , Early Discovery Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, EssexCM19 5TR, United Kingdom
| | - Wei Wei Prior
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Laurent Salphati
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Steve Sideris
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven T Staben
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Stefan Steinbacher
- Proteros Biostructures GmbH , Bunsenstr. 7aD, 82152 Martinsried, Germany
| | - Vickie Tsui
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeffrey Wallin
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Deepak Sampath
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Alan G Olivero
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
15
|
Heffron TP, McClory A, Stumpf A. The Discovery and Process Chemistry Development of GDC-0084, a Brain Penetrating Inhibitor of PI3K and mTOR. COMPREHENSIVE ACCOUNTS OF PHARMACEUTICAL RESEARCH AND DEVELOPMENT: FROM DISCOVERY TO LATE-STAGE PROCESS DEVELOPMENT VOLUME 1 2016. [DOI: 10.1021/bk-2016-1239.ch006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Timothy P. Heffron
- Department of Discovery Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
- Small Molecule Process Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Andrew McClory
- Department of Discovery Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
- Small Molecule Process Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Andreas Stumpf
- Department of Discovery Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
- Small Molecule Process Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
16
|
Tripeptide SQL Inhibits Platelet Aggregation and Thrombus Formation by Affecting PI3K/Akt Signaling. J Cardiovasc Pharmacol 2015; 66:254-60. [DOI: 10.1097/fjc.0000000000000269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Yin Y, Zhang YQ, Jin B, Sha S, Wu X, Sangani CB, Wang SF, Qiao F, Lu AM, Lv PC, Zhu HL. 6,7-Dihydrobenzo[f]benzo[4,5]imidazo[1,2-d][1,4]oxazepine derivatives as selective inhibitors of PI3Kα. Bioorg Med Chem 2015; 23:1231-40. [DOI: 10.1016/j.bmc.2015.01.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 01/14/2023]
|
18
|
Akinleye A, Avvaru P, Furqan M, Song Y, Liu D. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol 2013; 6:88. [PMID: 24261963 PMCID: PMC3843585 DOI: 10.1186/1756-8722-6-88] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/12/2013] [Indexed: 02/08/2023] Open
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate diverse cellular processes including proliferation, adhesion, survival, and motility. Dysregulated PI3K pathway signaling occurs in one-third of human tumors. Aberrantly activated PI3K signaling also confers sensitivity and resistance to conventional therapies. PI3K has been recognized as an attractive molecular target for novel anti-cancer molecules. In the last few years, several classes of potent and selective small molecule PI3K inhibitors have been developed, and at least fifteen compounds have progressed into clinical trials as new anticancer drugs. Among these, idelalisib has advanced to phase III trials in patients with advanced indolent non-Hodgkin's lymphoma and mantle cell lymphoma. In this review, we summarized the major molecules of PI3K signaling pathway, and discussed the preclinical models and clinical trials of potent small-molecule PI3K inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Delong Liu
- Division of Hematology/Oncology, Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA.
| |
Collapse
|
19
|
Ndubaku CO, Heffron TP, Staben ST, Baumgardner M, Blaquiere N, Bradley E, Bull R, Do S, Dotson J, Dudley D, Edgar KA, Friedman LS, Goldsmith R, Heald RA, Kolesnikov A, Lee L, Lewis C, Nannini M, Nonomiya J, Pang J, Price S, Prior WW, Salphati L, Sideris S, Wallin JJ, Wang L, Wei B, Sampath D, Olivero AG. Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1H-1,2-4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): a β-sparing phosphoinositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity. J Med Chem 2013; 56:4597-610. [PMID: 23662903 DOI: 10.1021/jm4003632] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dysfunctional signaling through the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway leads to uncontrolled tumor proliferation. In the course of the discovery of novel benzoxepin PI3K inhibitors, we observed a strong dependency of in vivo antitumor activity on the free-drug exposure. By lowering the intrinsic clearance, we derived a set of imidazobenzoxazepin compounds that showed improved unbound drug exposure and effectively suppressed growth of tumors in a mouse xenograft model at low drug dose levels. One of these compounds, GDC-0032 (11l), was progressed to clinical trials and is currently under phase I evaluation as a potential treatment for human malignancies.
Collapse
Affiliation(s)
- Chudi O Ndubaku
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|