1
|
Caruso L, Nadur NF, Brandão M, Peixoto Ferreira LDA, Lacerda RB, Graebin CS, Kümmerle AE. The Design of Multi-target Drugs to Treat Cardiovascular Diseases: Two (or more) Birds on one Stone. Curr Top Med Chem 2022; 22:366-394. [PMID: 35105288 DOI: 10.2174/1568026622666220201151248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVDs) comprise a group of diseases and disorders of the heart and blood vessels, which together are the number one cause of death worldwide, being associated with multiple genetic and modifiable risk factors, and that may directly arise from different etiologies. For a long time, the search for cardiovascular drugs was based on the old paradigm "one compound - one target", which aims to obtain a highly potent and selective molecule with only one desired molecular target. Although historically successful in the last decades, this approach ignores the multiple causes and the multifactorial nature of CVD's. Thus, over time, treatment strategies for cardiovascular diseases have changed and, currently, pharmacological therapies for CVD are mainly based on the association of two or more drugs to control symptoms and reduce cardiovascular death. In this context, the development of multitarget drugs, i.e, compounds having the ability to act simultaneously at multiple sites, is an attractive and relevant strategy that can be even more advantageous to achieve predictable pharmacokinetic and pharmacodynamics correlations as well as better patient compliance. In this review, we aim to highlight the efforts and rational pharmacological bases for the design of some promising multitargeted compounds to treat important cardiovascular diseases like heart failure, atherosclerosis, acute myocardial infarction, pulmonary arterial hypertension and arrhythmia.
Collapse
Affiliation(s)
- Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Marina Brandão
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Larissa de Almeida Peixoto Ferreira
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| |
Collapse
|
2
|
Vu TK, Thanh NT, Minh NV, Linh NH, Thao NTP, Nguyen TTB, Hien DT, Chinh LV, Duc TH, Anh LD, Hai PT. Novel Conjugated Quinazolinone-Based Hydroxamic Acids: Design, Synthesis and Biological Evaluation. Med Chem 2021; 17:732-749. [PMID: 32310052 DOI: 10.2174/1573406416666200420081540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The target-based approach to drug discovery currently attracts a great deal of interest from medicinal chemists in anticancer drug discovery and development. Histone deacetylase (HDAC) inhibitors represent an extensive class of targeted anti-cancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as vorinostat and belinostat. AIMS This study aims at developing novel HDAC inhibitors bearing conjugated quinazolinone scaffolds with potential cytotoxicity against different cancer cell lines. METHODS A series of novel N-hydroxyheptanamides incorporating conjugated 6-hydroxy-2 methylquinazolin- 4(3H)-ones (15a-l) was designed, synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines, including HepG-2, MCF-7 and SKLu-1. Molecular simulations were finally performed to gain more insight into the structureactivity relationships. RESULTS It was found that among novel conjugated quinazolinone-based hydroxamic acids synthesized, compounds 15a, 15c and 15f were the most potent, both in terms of HDAC inhibition and cytotoxicity. Especially, compound 15f displayed up to nearly 4-fold more potent than SAHA (vorinostat) in terms of cytotoxicity against MCF-7 cell line with IC50 value of 1.86 μM, and HDAC inhibition with IC50 value of 6.36 μM. Docking experiments on HDAC2 isozyme showed that these compounds bound to HDAC2 with binding affinities ranging from -10.08 to -14.93 kcal/mol compared to SAHA (-15.84 kcal/mol). It was also found in this research that most of the target compounds seemed to be more cytotoxic toward SKLu-1than MCF-7 and HepG-2. CONCLUSION The resesrch results suggest that some hydroxamic acids could emerge for further evaluation and the results are well served as basics for further design of more potent HDAC inhibitors and antitumor agents.
Collapse
Affiliation(s)
- Tran Khac Vu
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Thi Thanh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Van Minh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Huong Linh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Thi Phương Thao
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Trương Thuc Bao Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Doan Thi Hien
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Luu Van Chinh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet-Cau Giay, Hanoi, Vietnam
| | - Ta Hong Duc
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Lai Duc Anh
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Pham-The Hai
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| |
Collapse
|
3
|
Minh NV, Thanh NT, Lien HT, Anh DTP, Cuong HD, Nam NH, Hai PT, Minh-Ngoc L, Le-Thi-Thu H, Chinh LV, Vu TK. Design, Synthesis and Biological Evaluation of Novel N-hydroxyheptanamides Incorporating 6-hydroxy-2-methylquinazolin-4(3H)-ones as Histone Deacetylase Inhibitors and Cytotoxic Agents. Anticancer Agents Med Chem 2019; 19:1543-1557. [PMID: 31267876 DOI: 10.2174/1871520619666190702142654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 05/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Target-based approach to drug discovery currently attracts a great deal of interest from medicinal chemists in anticancer drug discovery and development worldwide, and Histone Deacetylase (HDAC) inhibitors represent an extensive class of targeted anti-cancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as vorinostat and belinostat. AIMS This study aims at developing novel HDAC inhibitors bearing quinazolinone scaffolds with potential cytotoxicity against different cancer cell lines. METHODS A series of novel N-hydroxyheptanamides incorporating 6-hydroxy-2 methylquinazolin-4(3H)-ones (14a-m) was designed, synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines, including HepG-2 (liver cancer), MCF-7 (breast cancer) and SKLu-1 (lung cancer). Molecular simulations were finally carried out to gain more insight into the structure-activity relationships. ADME-T predictions for selected compounds were also performed to predict some important features contributing to the absorption profile of the present hydroxamic derivatives. RESULTS It was found that the N-hydroxyheptanamide 14i and 14j were the most potent, both in terms of HDAC inhibition and cytotoxicity. These compounds displayed up to 21-71-fold more potent than SAHA (suberoylanilide hydroxamic acid, vorinostat) in terms of cytotoxicity, and strong inhibition against the whole cell HDAC enzymes with IC50 values of 7.07-9.24μM. Docking experiments on HDAC2 isozyme using Autodock Vina showed all compounds bound to HDAC2 with relatively higher affinities (from -7.02 to -11.23 kcal/mol) compared to SAHA (-7.4 kcal/mol). It was also found in this research that most of the target compounds seemed to be more cytotoxic toward breast cancer cells (MCF-7) than liver (HepG2), and lung (SKLu-1) cancer cells.
Collapse
Affiliation(s)
- Nguyen V Minh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Nguyen T Thanh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Hoang T Lien
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Dinh T P Anh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Ho D Cuong
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Nguyen H Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Pham T Hai
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Le Minh-Ngoc
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Huong Le-Thi-Thu
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Luu V Chinh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet-Cau Giay-Hanoi, Vietnam
| | - Tran K Vu
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| |
Collapse
|
4
|
Design, synthesis and cytotoxic evaluation of quinazoline-2,4,6-triamine and 2,6-diaminoquinazolin-4(3H)-one derivatives. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2188-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Gandhi H, Naik P, Agrawal N, Yadav M. Protective effects of MCR-1329, a dual α1 and angII receptor antagonist, in mineralocorticoid-induced hypertension. Pharmacol Rep 2016; 68:952-9. [PMID: 27371897 DOI: 10.1016/j.pharep.2016.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND With the prototypical structures of losartan and prazosin as the axis of our research, MCR-1329 emerged as a potential designed multiple ligand from a series of compounds designed to possess dual antagonistic activity on the α1 and AT1 receptor. After confirming the activity of MCR-1329 in in vitro and acute in vivo models, the present study was undertaken to determine the efficacy of MCR-1329 in a mammalian test system. METHODS A rat model of deoxycorticosterone acetate (DOCA)-salt induced renal hypertension following unilateral nephrectomy was utilized to determine the effect of MCR-1329. For mechanistic evaluations, MCR-1329 was evaluated on rat aortic strips in vitro and on rat aortic smooth muscle cells to determine the role of MCR-1329 on phosphoinositide 3 kinase (PI3K) signaling. RESULTS Results of the study showed that MCR-1329 prevents development of arterial hypertension. It was also observed that MCR-1329 upheld the intimal structures of major arteries like the thoracic aorta. Acetylcholine (Ach)-mediated relaxation remained intact in arteries from MCR-1329 treated animals. It was observed that MCR-1329 partially prevents Thr-308 phosphorylation of Akt following ligand-mediated receptor stimulation in vascular smooth muscle cells. Addition of LY294002 to the reaction medium caused a near-complete inhibition of Akt-phosphorylation. This suggested that MCR-1329 elicits its antihypertensive role by blocking activation of receptor-mediated PI3K-Akt downstream signaling as well as through preservation of arterial integrity. CONCLUSIONS MCR-1329 has the potential to be evaluated further for clinical development as a potential antihypertensive agent with multiple mechanisms of action.
Collapse
Affiliation(s)
- Hardik Gandhi
- Faculty of Pharmacy, Kalabhavan Campus, The M. S. University of Baroda, Vadodara, Gujarat, India
| | - Prashant Naik
- Faculty of Pharmacy, Kalabhavan Campus, The M. S. University of Baroda, Vadodara, Gujarat, India
| | - Nitesh Agrawal
- Faculty of Pharmacy, Kalabhavan Campus, The M. S. University of Baroda, Vadodara, Gujarat, India
| | - Mangeram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The M. S. University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
6
|
Agrawal N, Machhi J, Rathwa V, Kanhed AM, Patel S, Murumkar P, Gandhi H, Yadav MR. Exploration of 6,7-dimethoxyquinazoline derivatives as dual acting α 1- and AT 1-receptor antagonists: synthesis, evaluation, pharmacophore & 3D-QSAR modeling and receptor docking studies. RSC Adv 2016. [DOI: 10.1039/c6ra00589f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The 6,7-dimethoxyquinazoline scaffold was further explored to provide dual acting α1- and AT1-receptor antagonists by synthesizing a series of derivatives and biologically evaluating the newly synthesized compounds.
Collapse
Affiliation(s)
- Neetesh Agrawal
- Faculty of Pharmacy
- The M. S. University of Baroda
- Vadodara – 390001
- India
| | - Jatin Machhi
- Faculty of Pharmacy
- The M. S. University of Baroda
- Vadodara – 390001
- India
| | - Virendra Rathwa
- Faculty of Pharmacy
- The M. S. University of Baroda
- Vadodara – 390001
- India
| | - Ashish M. Kanhed
- Faculty of Pharmacy
- The M. S. University of Baroda
- Vadodara – 390001
- India
| | - Sagar Patel
- Faculty of Pharmacy
- The M. S. University of Baroda
- Vadodara – 390001
- India
| | - Prashant Murumkar
- Faculty of Pharmacy
- The M. S. University of Baroda
- Vadodara – 390001
- India
| | - Hardik Gandhi
- Faculty of Pharmacy
- The M. S. University of Baroda
- Vadodara – 390001
- India
| | - Mange Ram Yadav
- Faculty of Pharmacy
- The M. S. University of Baroda
- Vadodara – 390001
- India
| |
Collapse
|