1
|
Ratto A, Honek JF. Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry. Curr Med Chem 2024; 31:1172-1213. [PMID: 36915986 DOI: 10.2174/0929867330666230313141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 03/15/2023]
Abstract
The biological and medicinal chemistry of the oxocarbon acids 2,3- dihydroxycycloprop-2-en-1-one (deltic acid), 3,4-dihydroxycyclobut-3-ene-1,2-dione (squaric acid), 4,5-dihydroxy-4-cyclopentene-1,2,3-trione (croconic acid), 5,6-dihydroxycyclohex- 5-ene-1,2,3,4-tetrone (rhodizonic acid) and their derivatives is reviewed and their key chemical properties and reactions are discussed. Applications of these compounds as potential bioisosteres in biological and medicinal chemistry are examined. Reviewed areas include cell imaging, bioconjugation reactions, antiviral, antibacterial, anticancer, enzyme inhibition, and receptor pharmacology.
Collapse
Affiliation(s)
- Amanda Ratto
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
2
|
Labra-Vázquez P, Rocha E, Xiao Y, Tassé M, Duhayon C, Farfán N, Santillan R, Gibot L, Lacroix PG, Malfant I. A Trojan horse approach for enhancing the cellular uptake of a ruthenium nitrosyl complex. Dalton Trans 2023; 52:18177-18193. [PMID: 37997689 DOI: 10.1039/d3dt03480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Ruthenium nitrosyl (RuNO) complexes continue to attract significant research interest due to several appealing features that make these photoactivatable nitric oxide (NO˙) donors attractive for applications in photoactivated chemotherapy. Interesting examples of molecular candidates capable of delivering cytotoxic concentrations of NO˙ in aqueous media have been discussed. Nevertheless, the question of whether most of these highly polar and relatively large molecules are efficiently incorporated by cells remains largely unanswered. In this paper, we present the synthesis and the chemical, photophysical and photochemical characterization of RuNO complexes functionalized with 17α-ethinylestradiol (EE), a semisynthetic steroidal hormone intended to act as a molecular Trojan horse for the targeted delivery of RuNO complexes. The discussion is centered around two main molecular targets, one containing EE (EE-Phtpy-RuNO) and a reference compound lacking this biological recognition fragment (Phtpy-RuNO). While both complexes displayed similar optical absorption profiles and NO˙ release efficiencies in aqueous media, important differences were found regarding their cellular uptake towards dermal fibroblasts, with EE-Phtpy-RuNO gratifyingly displaying a remarkable 10-fold increase in cellular uptake when compared to Phtpy-RuNO, thus demonstrating the potential drug-targeting capabilities of this biomimetic steroidal conjugate.
Collapse
Affiliation(s)
- Pablo Labra-Vázquez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Erika Rocha
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Yue Xiao
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, Ciudad de México, Mexico
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse, III - Paul Sabatier, France
| | - Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077, Toulouse, France.
| |
Collapse
|
3
|
Liang Z, Liu L, Zhou Y, Liu W, Lu Y. Research Progress on Bioactive Metal Complexes against ER-Positive Advanced Breast Cancer. J Med Chem 2023; 66:2235-2256. [PMID: 36780448 DOI: 10.1021/acs.jmedchem.2c01458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Breast cancer is the most prevalent cancer in women and represents a serious disease that is harmful to life and health. In 1977, with the approval of tamoxifen, endocrine therapy has become the main clinical treatment for ER-positive (ER+) breast cancer. Although patients initially respond well to endocrine therapies, drug resistance often emerges and side effects can be challenging. To overcome drug resistance, the exploration for new drugs is a priority. Metal complexes have demonstrated significant antitumor activities, and platinum complexes are widely used in the clinic against various cancers, including breast cancer. In this Perspective, the first section describes the classification and mechanism of endocrine therapy drugs for ER+ breast cancer, and the second section summarizes research since 2000 into metal complexes with activity toward ER+ breast cancer. Finally, we discuss the opportunities, challenges, and future directions for metal complexes in the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Lijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yanyu Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Bansal R, Suryan A. A Comprehensive Review on Steroidal Bioconjugates as Promising Leads in Drug Discovery. ACS BIO & MED CHEM AU 2022; 2:340-369. [PMID: 37102169 PMCID: PMC10125316 DOI: 10.1021/acsbiomedchemau.1c00071] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ever increasing unmet medical requirements of the human race and the continuous fight for survival against variety of diseases give birth to novel molecules through research. As diseases evolve, different strategies are employed to counter the new challenges and to discover safer, more effective, and target-specific therapeutic agents. Among several novel approaches, bioconjugation, in which two chemical moieties are joined together to achieve noticeable results, has emerged as a simple and convenient technique for a medicinal chemist to obtain potent molecules. The steroid system has been extensively used as a privileged scaffold gifted with significantly diversified medicinal properties in the drug discovery and development process. Steroidal molecules are preferred for their rigidness and good ability to penetrate biological membranes. Slight alteration in the basic ring structure results in the formation of steroidal derivatives with a wide range of therapeutic activities. Steroids are not only active as such, conjugating them with various biologically active moieties results in increased lipophilicity, stability, and target specificity with decreased adverse effects. Thus, the steroid nucleus prominently behaves as a biological carrier for small molecules. The steroid bioconjugates offer several advantages such as synergistic activity with fewer side effects due to reduced dose and selective therapy. The steroidal bioconjugates have been widely explored for their usefulness against various disorders and have shown significant utility as anticancer, anti-inflammatory, anticoagulant, antimicrobial, insecticidal/pesticidal, antioxidant, and antiviral agents along with several other miscellaneous activities. This work provides a comprehensive review on the therapeutic progression of steroidal bioconjugates as medicinally active molecules. The review covers potential biological applications of steroidal bioconjugates and would benefit the wider scientific community in their drug discovery endeavors.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Amruta Suryan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
5
|
Golovanov I, Leonov A, Lesnikov V, Pospelov E, Frolov KV, Korlyukov A, Nelyubina YV, Novikov VV, Sukhorukov AY. Iron(IV) Complexes with Tetraazaadamantane-based Ligands: Synthesis, Structure, Application in Dioxygen Activation and Labeling of Biomolecules. Dalton Trans 2022; 51:4284-4296. [DOI: 10.1039/d1dt04104e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
4,6,10-Trihydroxy-1,4,6,10-tetraazaadamantane (TAAD) has been shown to form a stable Fe(IV) complex having a diamantane cage structure, in which the metal center is coordinated by three oxygen atoms of the deprotonated...
Collapse
|
6
|
Nikolova Y, Dobrikov GM, Petkova Z, Shestakova P. Chiral Aminoalcohols and Squaric Acid Amides as Ligands for Asymmetric Borane Reduction of Ketones: Insight to In Situ Formed Catalytic System by DOSY and Multinuclear NMR Experiments. Molecules 2021; 26:6865. [PMID: 34833957 PMCID: PMC8624562 DOI: 10.3390/molecules26226865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
A series of squaric acid amides (synthesized in 66-99% isolated yields) and a set of chiral aminoalcohols were comparatively studied as ligands in a model reaction of reduction of α-chloroacetophenone with BH3•SMe2. In all cases, the aminoalcohols demonstrated better efficiency (up to 94% ee), while only poor asymmetric induction was achieved with the corresponding squaramides. A mechanistic insight on the in situ formation and stability at room temperature of intermediates generated from ligands and borane as possible precursors of the oxazaborolidine-based catalytic system has been obtained by 1H DOSY and multinuclear 1D and 2D (1H, 10/11B, 13C, 15N) NMR spectroscopy of equimolar mixtures of borane and selected ligands. These results contribute to better understanding the complexity of the processes occurring in the reaction mixture prior to the possible oxazaborolidine formation, which play a crucial role on the degree of enantioselectivity achieved in the borane reduction of α-chloroacetophenone.
Collapse
Affiliation(s)
- Yana Nikolova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bl. 9, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (G.M.D.); (Z.P.)
| | | | | | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bl. 9, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (G.M.D.); (Z.P.)
| |
Collapse
|
7
|
Promising applications of steroid сonjugates for cancer research and treatment. Eur J Med Chem 2020; 210:113089. [PMID: 33321260 DOI: 10.1016/j.ejmech.2020.113089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
The conjugation of biologically active molecules is a powerful tool for drug discovery used to target a variety of multifunctional diseases including cancer. Conjugated drugs can provide combination therapies in a single multi-functional agent and, by doing so, be more specific and powerful than conventional classic treatments. Steroids are widely used for conjugation with other biological active molecules. This review refers to investigations of steroid conjugates as potential anticancer agents carried out mostly over the past decade. It consists of five parts in which the data concerning structure and anticancer activity of steroid conjugates with DNA alkylating agents, metallocomplexes, approved drugs, some biological active molecules, some natural compounds and related synthetic analogs are described.
Collapse
|
8
|
|
9
|
Hanson RN, McCaskill E, Hua E, Tongcharoensirikul P, Dilis R, Silver JL, Coulther TA, Ondrechen MJ, Labaree D, Hochberg RB. Synthesis of benzoylbenzamide derivatives of 17α-E-vinyl estradiol and evaluation as ligands for the estrogen receptor-α ligand binding domain. Steroids 2019; 144:15-20. [PMID: 30738075 DOI: 10.1016/j.steroids.2019.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/10/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
A series consisting of substituted benzoylbenzamide derivatives of 17α-E-vinyl estradiol 6a-i and 7a-d was prepared in good overall yields from the corresponding novel iodinated benzoylbenzamide precursors using Pd(0)-catalyzed Stille coupling. Biological evaluation using competitive binding assays indicated that all compounds were effective ligands for the ERα- and ERβ-LBD (RBA = 0.5-10.0% of estradiol). Most of the compounds expressed lower stimulatory (agonist) potency (RSA <0.2-0.5%) compared to their binding affinity, however, the meta-substituted isomer 6h demonstrated a level of efficacy (RSA = 5.7%) comparable to its affinity (RBA = 9.5%). Docking studies of 6b, 6h, and 6i with the 2YAT crystal structure suggested that higher affinity and efficacy of 6h are due to an effective set of interactions with exposed receptor sidechains not observed with the ortho- and para- isomers. In this binding model, the terminal ring of the ligand is exposed to the solvent space, which would explain both the small variation in RBA values and the narrow SAR for the diverse structural features.
Collapse
Affiliation(s)
- Robert N Hanson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States.
| | - Emmett McCaskill
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Edward Hua
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | | | - Robert Dilis
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Jessa L Silver
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Timothy A Coulther
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - David Labaree
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Richard B Hochberg
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
10
|
Morales K, Samper KG, Peña Q, Hernando J, Lorenzo J, Rodríguez-Diéguez A, Capdevila M, Figueredo M, Palacios Ò, Bayón P. Squaramide-Based Pt(II) Complexes as Potential Oxygen-Regulated Light-Triggered Photocages. Inorg Chem 2018; 57:15517-15525. [PMID: 30495945 DOI: 10.1021/acs.inorgchem.8b02854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Two new squaramide-based platinum(II) complexes C1 and C2 have been synthesized and fully characterized. Their photoresponse has been assessed and is discussed. A remarkable enhancement in the DNA binding activity has been observed for both complexes, up on irradiation. For C2, the release of Pt(II) provoked by its irradiation has been studied. The response of C2 has been found to be regulated by the presence of oxygen. In vitro cytotoxicity tests show an enhancement in the activity of complex C2 after selective irradiation under hypoxic conditions. Resulting Pt(II) species have been isolated and characterized by various analytical methods establishing this type of squaramido-based complexes as a proof of concept for new Pt(II) photocages.
Collapse
Affiliation(s)
- Kevin Morales
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| | - Katia G Samper
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| | - Quim Peña
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain.,Aix Marseille Univ, CNRS, Cent Marseille, iSm2 , 13013 Marseille , France
| | - Jordi Hernando
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| | - Julia Lorenzo
- Departament de Bioquímica i Biologia Molecular , Institut de Biotecnologia i Biomedicina (IBB) , Campus UAB , 08193 Cerdanyola del Vallès , Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias , Universidad de Granada , 18071 Granada , Spain
| | - Mercè Capdevila
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| | - Marta Figueredo
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| | - Òscar Palacios
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| | - Pau Bayón
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| |
Collapse
|
11
|
Sirén H, El Fellah S. Androgens, oestrogens, and progesterone concentrations in wastewater purification processes measured with capillary electrophoresis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16765-16785. [PMID: 28567679 DOI: 10.1007/s11356-017-9060-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
A novel analytical-scale concept to improve reliability of detection and analysis of natural and processed wastewater samples from a purification plant was developed. A sequential sample clean-up system of polymer-based octadecyl and silane-based quaternary amine sorbents were used for concentrating human based steroid hormones and their metabolites and detecting them by UV absorption with capillary electrophoresis (CE). The water samples were collected from influent and effluent processes of the water purification plant in Helsinki, Finland.The CE methods were partial-filling micellar electrokinetic chromatography and capillary zone electrophoresis. The analysis times and method concentration levels were optimized with eight steroids at the range of 0.5-10 mg/L. Since in CE the detectable quantities were higher than the existing amounts in the process waters, the real samples needed matrix removal combined with steroid enrichment. After 20,000-fold concentration testosterone-glucoside, androstenedione, progesterone, and estradiol-glucoside could be determined in the process water samples. The amounts of individual steroids in influent and effluent waters were 0-429 and 0-207 ng/L, respectively. Correspondently, their total amounts were 735 and 212 ng/L with excellent in day and inter-day repeatability. The RSD values were less than 1, 9.7, and 19% in repeated analyses, calculated from 60 analyses during 24 h, and from 130 analyses during 15 months, respectively. The steroid removal in purification process was 65% on average. The solid particles separated in three steps during the water clean-up concept contained 9.8-45 ng/g steroids in combined dry precipitates.
Collapse
Affiliation(s)
- Heli Sirén
- Department of Chemistry, Laboratory of Analytical Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FI-00014, Helsinki, Finland.
| | - Samira El Fellah
- Department of Chemistry, Laboratory of Analytical Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FI-00014, Helsinki, Finland
| |
Collapse
|
12
|
Abstract
Estrogen receptors (ERs) are a group of compounds named for their importance in both menstrual and estrous reproductive cycles. They are involved in the regulation of various processes ranging from tissue growth maintenance to reproduction. Their action is mediated through ER nuclear receptors. Two subtypes of the estrogen receptor, ERα and ERβ, exist and exhibit distinct cellular and tissue distribution patterns. In humans, both receptor subtypes are expressed in many cells and tissues, and they control key physiological functions in various organ systems. Estrogens attract great attention due to their wide applications in female reproductive functions and treatment of some estrogen-dependent cancers and osteoporosis. This paper provides a general review of ER ligands published in international journals patented between 2013 and 2015. The broad physiological profile of estrogens has attracted the attention of many researchers to develop new estrogen ligands as therapeutic molecules for various clinical purposes. After the discovery of the ERβ receptor, subtype-selective ligands could be used to elicit beneficial estrogen-like activities and reduce adverse side effects, based on the different distributions and relative levels of the two ER subtypes in different estrogen target tissues. Therefore, recent literature has focused on selective estrogen ligands as highly promising agents for the treatment of some types of cancer, as well as for cardiovascular, inflammatory, and neurodegenerative diseases. Estrogen receptors are nuclear transcription factors that are involved in the regulation of many complex physiological functions in humans. Selective estrogen ligands are highly promising targets for treatment of some types of cancer, as well as for cardiovascular, inflammatory and neurodegenerative diseases. Extensive structure-activity relationship studies of ER ligands based on small molecules indicate that many different structural scaffolds may provide high-affinity compounds, provided that some basic structural requirements are present.
Collapse
|
13
|
Fernández-Moreira V, Alegre-Requena JV, Herrera RP, Marzo I, Gimeno MC. Synthesis of luminescent squaramide monoesters: cytotoxicity and cell imaging studies in HeLa cells. RSC Adv 2016. [DOI: 10.1039/c5ra24521d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Luminescent squaramide monoesters functionalised with fluorophore groups have been explored as cytotoxic and imaging agents. The biodistribution behaviour differs depending on the fluorescent moiety; lysosomal and nuclear localisation have been observed.
Collapse
Affiliation(s)
- Vanesa Fernández-Moreira
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- E-50009 Zaragoza
- Spain
| | - Juan V. Alegre-Requena
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- E-50009 Zaragoza
- Spain
| | - Raquel P. Herrera
- Departamento de Química Orgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- E-50009 Zaragoza
- Spain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología Molecular y Celular
- Universidad de Zaragoza
- E-50009 Zaragoza
- Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- E-50009 Zaragoza
- Spain
| |
Collapse
|
14
|
Quintana M, Alegre-Requena JV, Marqués-López E, Herrera RP, Triola G. Squaramides with cytotoxic activity against human gastric carcinoma cells HGC-27: synthesis and mechanism of action. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00515a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of squaramates and squaramides have been synthesized and their cytotoxic activity has been investigated in different cancer cell lines.
Collapse
Affiliation(s)
- Mireia Quintana
- Biomedicinal Chemistry Department
- Institute of Advanced Chemistry of Catalonia (IQAC)
- CSIC
- Barcelona
- Spain
| | - Juan V. Alegre-Requena
- Biomedicinal Chemistry Department
- Institute of Advanced Chemistry of Catalonia (IQAC)
- CSIC
- Barcelona
- Spain
| | - Eugenia Marqués-López
- Laboratorio de Organocatálisis Asimétrica
- Departamento de Química Orgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC-Universidad de Zaragoza
- E-50009 Zaragoza
| | - Raquel P. Herrera
- Laboratorio de Organocatálisis Asimétrica
- Departamento de Química Orgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC-Universidad de Zaragoza
- E-50009 Zaragoza
| | - Gemma Triola
- Biomedicinal Chemistry Department
- Institute of Advanced Chemistry of Catalonia (IQAC)
- CSIC
- Barcelona
- Spain
| |
Collapse
|