1
|
Anosike IS, Beng TK. Harnessing the 1,3-azadiene-anhydride reaction for the regioselective and stereocontrolled synthesis of lactam-fused bromotetrahydropyrans by bromoetherification of lactam-tethered trisubstituted tertiary alkenols. RSC Adv 2024; 14:18501-18507. [PMID: 38860240 PMCID: PMC11163878 DOI: 10.1039/d4ra02523g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Halo-cycloetherification of lactam-tethered alkenols enables the construction of oxygen-heterocycles that are fused to nitrogen heterocycles via intramolecular halonium-induced nucleophilic addition. Specifically, tetrahydropyrans (THPs) that are fused to a nitrogen heterocycle constitute the core of several bioactive molecules, including tachykinin receptor antagonists and alpha-1 adrenergic antagonists. Although the literature is replete with successful examples of the halo-cycloetherification of simple mono- or disubstituted primary alkenols, methods for the modular, efficient, regioselective, and stereocontrolled intramolecular haloetherification of sterically encumbered trisubstituted tertiary alkenols are rare. Here, we describe a simple intramolecular bromoetherification strategy that meets these benchmarks and proceeds with exclusive 6-endo regioselectivity. The transformation employs mild and water-tolerant conditions, which bodes well for late-stage diversification. The hindered ethers contain four contiguous stereocenters as well as one halogen-bearing tetrasubstituted stereocenter.
Collapse
Affiliation(s)
- Ifeyinwa S Anosike
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
2
|
Wu Y, Ding C, Zhang Z, Zhang J, Li Y, Song X, Zhang D. Sesquilignans: Current research and potential prospective. Eur J Med Chem 2024; 271:116445. [PMID: 38701715 DOI: 10.1016/j.ejmech.2024.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
Lignans are widely distributed in nature, primarily found in the xylem and resins of plants, with the constituent units C6-C3, and their dimers are the most common in plants. In recent years, the trimeric sesquilignans have also received increasing attention from scholars. More than 200 derivatives have been isolated and identified from nearly 50 families, most of which are different types (monoepoxy lignans, bisepoxy lignans, benzofuran lignans) connected with simple phenylpropanoids through ether bonds, C-C bonds, and oxygen-containing rings to constitute sesquilignans. Some of them also possess pharmacological properties, including antioxidants, hepatoprotectives, antitumors, anti-inflammatory properties, and other properties. In addition, the chemical structure of sesquilignans is closely related to the pharmacological activity, and chemical modification of methoxylation enhances the pharmacological activity. In contrast, phenolic hydroxyl and hydroxyl glycosides reduce the pharmacological activity. Therefore, the present review aims to summarize the chemical diversity, bioactivities, and constitutive relationships to provide a theoretical basis for the more profound development and utilization of sesquilignans.
Collapse
Affiliation(s)
- Ying Wu
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| | - Chao Ding
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| | - Zilong Zhang
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| | - Jiayi Zhang
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| | - Yuze Li
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| | - Xiaomei Song
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| |
Collapse
|
3
|
Discovery of stereospecific cytotoxicity of (8R,8'R)-trans-arctigenin against insect cells and structure-activity relationship on aromatic ring. Bioorg Med Chem Lett 2020; 30:127191. [PMID: 32359854 DOI: 10.1016/j.bmcl.2020.127191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 12/17/2022]
Abstract
One of the arctigenin stereoisomers, (8R,8'R)-trans-form 1, showed stereospecific cytotoxicity against insect cells, Sf9 and NIAS-AeAl-2 cells. By the comparison with other stereoisomers, the most importance of the 8'R stereochemistry for the higher activities was clarified. On the other hand, the wider range of activity level among stereoisomers against cancer cells, HL-60, was not observed. The structure-activity relationship research using derivatives bearing (8R,8'R)-trans-form was performed to show the same level of activities of 3-iodo, 4-iodo, and 3,4-methylenedioxy derivatives 28, 29, and 36 as (8R,8'R)-trans-arctigenin 1. In the examination of thiono derivatives, 4-iodo thiono and 3,4-methylenedioxy thiono derivatives 66, 67 showed similar level of activities to that of (8R,8'R)-trans-arctigenin 1. The expression of ribosomal 28S rRNA gene of Sf9 cells was increased by (8R,8'R)-trans-arctigenin 1, whereas a degradation of DNA was not observed.
Collapse
|
4
|
Álvarez-Méndez SJ, Fariña-Ramos M, Villalba ML, Perretti MD, García C, Moujir LM, Ramírez MA, Martín VS. Stereoselective Synthesis of Highly Substituted Tetrahydropyrans through an Evans Aldol-Prins Strategy. J Org Chem 2018; 83:9039-9066. [PMID: 30036470 DOI: 10.1021/acs.joc.8b01182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A direct and general method for the synthesis of naturally occurring 2,3,4,5,6-pentasubstituted tetrahydropyrans has been developed, employing β,γ-unsaturated N-acyl oxazolidin-2-ones as key starting materials. The combination of the Evans aldol addition and the Prins cyclization allowed the diastereoselective and efficient generation of the desired oxacycles in two fashions: a one-pot Evans aldol-Prins protocol, in which five new σ bonds and five contiguous stereocenters were straightforwardly generated, and a two-step version, which additionally permitted the isolation of β,γ-unsaturated alcohol precursors bearing an N-acyl oxazolidin-2-one in the α position. From these alcohols were also obtained halogenated pentasubstituted tetrahydropyrans as well as 2,3,4,5-tetrasubstituted tetrahydrofurans, shedding light on the mechanism of the process. Computational studies were consistent with the experimental findings, and this innovative Evans aldol-Prins strategy was performed for the preparation of a battery of more than 30 densely substituted tetrahydropyrans, unprecedentedly fused to a 1,3-oxazinane-2,4-dione ring, both in a racemic fashion and in an enantiomeric fashion. These novel molecules were successfully submitted to several transformations to permit simple access to a variety of differently functionalized tetrahydropyrans. Most of these unique molecules were evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and the yeast Candida albicans, and some structure-activity relationships were established.
Collapse
Affiliation(s)
- Sergio J Álvarez-Méndez
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Departamento de Química Orgánica , Universidad de La Laguna (ULL) , Avda. Astrofísico Francisco Sánchez 2 , 38206 San Cristóbal de La Laguna , Tenerife , Spain
| | - Marta Fariña-Ramos
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Departamento de Química Orgánica , Universidad de La Laguna (ULL) , Avda. Astrofísico Francisco Sánchez 2 , 38206 San Cristóbal de La Laguna , Tenerife , Spain
| | - María Luisa Villalba
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , 47 & 115, B1900AJI La Plata , Buenos Aires , Argentina
| | - Marcelle D Perretti
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Departamento de Química Orgánica , Universidad de La Laguna (ULL) , Avda. Astrofísico Francisco Sánchez 2 , 38206 San Cristóbal de La Laguna , Tenerife , Spain
| | - Celina García
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Departamento de Química Orgánica , Universidad de La Laguna (ULL) , Avda. Astrofísico Francisco Sánchez 2 , 38206 San Cristóbal de La Laguna , Tenerife , Spain
| | - Laila M Moujir
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Farmacia , Universidad de La Laguna (ULL) , Avda. Astrofísico Francisco Sánchez s/n , 38206 San Cristóbal de La Laguna , Tenerife , Spain
| | - Miguel A Ramírez
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Departamento de Química Orgánica , Universidad de La Laguna (ULL) , Avda. Astrofísico Francisco Sánchez 2 , 38206 San Cristóbal de La Laguna , Tenerife , Spain
| | - Víctor S Martín
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Departamento de Química Orgánica , Universidad de La Laguna (ULL) , Avda. Astrofísico Francisco Sánchez 2 , 38206 San Cristóbal de La Laguna , Tenerife , Spain
| |
Collapse
|
5
|
Syntheses of cytotoxic novel arctigenin derivatives bearing halogen and alkyl groups on aromatic rings. Bioorg Med Chem Lett 2017; 27:4199-4203. [DOI: 10.1016/j.bmcl.2017.06.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 11/19/2022]
|
6
|
Zhao LM, Cao FX, Jin HS, Zhang JH, Szwaya J, Wang G. One-pot synthesis of 1,4-dihydroxy-2-((E)-1-hydroxy-4-phenylbut-3-enyl)anthracene-9,10-diones as novel shikonin analogs and evaluation of their antiproliferative activities. Bioorg Med Chem Lett 2016; 26:2691-4. [PMID: 27080175 PMCID: PMC5474392 DOI: 10.1016/j.bmcl.2016.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/23/2016] [Accepted: 04/05/2016] [Indexed: 02/08/2023]
Abstract
A series of shikonin analogs have been synthesized in a one-pot reaction of quinizarin with β,γ-unsaturated aldehydes in MeOH under mild conditions and investigated for their cytotoxicity against four cancer cell lines and one normal cell line. The synthesized compounds were found to be cytotoxic against HeLa cells with no apparent toxicity against normal cell line. Further modification led to the discovery of a novel tetracyclic anthraquinone (4b/4b') with potent cytotoxic activities against cervical, breast and pancreatic cancer cell lines with no significant effect on the growth of the control mammary epithelial cell line MCF-10. The good cytotoxicity and selectivity of compound 4b/4b' suggest that it could be a promising lead for further optimization.
Collapse
Affiliation(s)
- Li-Ming Zhao
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Feng-Xia Cao
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Hai-Shan Jin
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jie-Huan Zhang
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jeffrey Szwaya
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| |
Collapse
|
7
|
Wukirsari T, Nishiwaki H, Nishi K, Sugahara T, Akiyama K, Kishida T, Yamauchi S. Cytotoxic activity of butane type of 1,7-seco-2,7'-cyclolignanes and apoptosis induction by Caspase 9 and 3. Bioorg Med Chem Lett 2014; 24:4231-5. [PMID: 25124113 DOI: 10.1016/j.bmcl.2014.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/02/2014] [Accepted: 07/11/2014] [Indexed: 12/17/2022]
Abstract
All stereoisomers of methoxybutane and fluorobutane type of 1,7-seco-2,7'-cyclolignane were synthesized and cytotoxic activities of these compounds were compared with those of all stereoisomers of butane and butanol type compounds. Both enantiomers of butane type secocyclolignane showed higher cytotoxic activity (IC50=16-20 μM) than methoxy type compounds, whereas none was observed for all the stereoisomers of butanol type secocyclolignane, however, (-)-Kadangustin J showed stereospecific cytotoxic activity (IC50=47-67 μM). Since (R)-9'-fluoro derivative 23 was most potent (IC50=19 μM) among the corresponding fluoro stereoisomers, (R)-9'-alkyl derivatives were synthesized, hydrophobic 9'-heptyl derivative 27 showing highest activity (IC50=3.7 μM against HL-60, IC50=3.1 μM against HeLa) in this experiment. Apoptosis induction caused by Caspase 3 and 9 for (R)-9'-heptyl derivative 27 was observed in the research on the mechanism. A degradation of DNA into small fragments was also shown by DNA ladder assay.
Collapse
Affiliation(s)
- Tuti Wukirsari
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hisashi Nishiwaki
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Kosuke Nishi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Takuya Sugahara
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; South Ehime Fisheries Research Center, 1289-1 Funakoshi, Ainan, Ehime 798-4292, Japan
| | - Koichi Akiyama
- Integrated Center for Sciences, Tarumi Station, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Taro Kishida
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; South Ehime Fisheries Research Center, 1289-1 Funakoshi, Ainan, Ehime 798-4292, Japan
| | - Satoshi Yamauchi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; South Ehime Fisheries Research Center, 1289-1 Funakoshi, Ainan, Ehime 798-4292, Japan.
| |
Collapse
|
8
|
Wukirsari T, Nishiwaki H, Nishi K, Sugahara T, Akiyama K, Kishida T, Yamauchi S. Cytotoxic activity of dietary lignan and its derivatives: structure-cytotoxic activity relationship of dihydroguaiaretic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5305-5315. [PMID: 24841776 DOI: 10.1021/jf5010572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cytotoxic activities of synthesized lignan derivatives were estimated by WST-8 reduction assay against HL-60 and HeLa cells to show the structure-activity relationship. The activities of some effective compounds were examined against Colon 26 and Vero cells. Dietary secoisolariciresinol (SECO, 1) and its metabolite, 9,9'-anhydrosecoisolariciresinol (2), did not show the cytotoxic activity. On the other hand, all stereoisomers of dihydroguaiaretic acid (DGA, 9,9'-dehydroxysecoisolariciresinol, 3-5) exhibited the activity (IC50: around 30 μM). The IC50 value of (8R,8'R)-9-butyl DGA derivative 13 was around 6 μM. This fact means that the hydrophobic group was advantageous for higher activity at 9- and 9'-positions. By the evaluation of the effect of 7and 7'-aryl group on the activity, we discovered the highest activity of (8R,8'R)-7-(3-hydroxy-4-methoxyphenyl)-7'-(2-ethoxyphenyl) DGA derivative 47 showing around 1 μM of IC50 value, which is about 24-fold higher activity than that of natural (8R,8'R)-DGA. The derivative of dietary lignan showed the high cytotoxic activity.
Collapse
Affiliation(s)
- Tuti Wukirsari
- Faculty of Agriculture and §Integrated Center for Sciences, Tarumi Station, Ehime University , 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Yamauchi S, Kumamoto M, Ochi Y, Nishiwaki H, Shuto Y. Structure-plant growth inhibitory activity relationship of lariciresinol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12297-12306. [PMID: 24274795 DOI: 10.1021/jf404292w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The syntheses of 55 lariciresinol derivatives containing derivatives on the 9-position and an aryl group at both 7- and 7'-positions were successful to examine the effect of structure of (-)-lariciresinol (1) on plant growth regulatory activity. (-)-(7R,8R,8'S)-9-Dehydroxylariciresinol 9 showed activity 2-fold more potent than that of natural (-)-lariciresinol (1) and -95% growth inhibitory activity to negative control against rye grass root at 1 mM. The derivatives bearing hydrophobic and smaller groups at the 9-position showed higher activity. The importance of 4- and 4'-hydroxy groups and 3- and 3'-small hydrophobic groups on 7- and 7'-phenyl groups for higher activity was also suggested.
Collapse
Affiliation(s)
- Satoshi Yamauchi
- Faculty of Agriculture, Ehime University , 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | | | | | | | | |
Collapse
|