1
|
Lee WG, Kim ES. Precision Oncology in Pediatric Cancer Surgery. Surg Oncol Clin N Am 2024; 33:409-446. [PMID: 38401917 DOI: 10.1016/j.soc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Pediatric precision oncology has provided a greater understanding of the wide range of molecular alterations in difficult-to-treat or rare tumors with the aims of increasing survival as well as decreasing toxicity and morbidity from current cytotoxic therapies. In this article, the authors discuss the current state of pediatric precision oncology which has increased access to novel targeted therapies while also providing a framework for clinical implementation in this unique population. The authors evaluate the targetable mutations currently under investigation-with a focus on pediatric solid tumors-and discuss the key surgical implications associated with novel targeted therapies.
Collapse
Affiliation(s)
- William G Lee
- Department of Surgery, Cedars-Sinai Medical Center, 116 North Robertson Boulevard, Suite PACT 700, Los Angeles, CA 90048, USA. https://twitter.com/william_ghh_lee
| | - Eugene S Kim
- Division of Pediatric Surgery, Department of Surgery, Cedars-Sinai Medical Center, 116 North Robertson Boulevard, Suite PACT 700, Los Angeles, CA 90048, USA.
| |
Collapse
|
2
|
Epp S, Chuah SM, Halasz M. Epigenetic Dysregulation in MYCN-Amplified Neuroblastoma. Int J Mol Sci 2023; 24:17085. [PMID: 38069407 PMCID: PMC10707345 DOI: 10.3390/ijms242317085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroblastoma (NB), a childhood cancer arising from the neural crest, poses significant clinical challenges, particularly in cases featuring amplification of the MYCN oncogene. Epigenetic factors play a pivotal role in normal neural crest and NB development, influencing gene expression patterns critical for tumorigenesis. This review delves into the multifaceted interplay between MYCN and known epigenetic modifications during NB genesis, shedding light on the intricate regulatory networks underlying the disease. We provide an extensive survey of known epigenetic mechanisms, encompassing DNA methylation, histone modifications, non-coding RNAs, super-enhancers (SEs), bromodomains (BET), and chromatin modifiers in MYCN-amplified (MNA) NB. These epigenetic changes collectively contribute to the dysregulated gene expression landscape observed in MNA NB. Furthermore, we review emerging therapeutic strategies targeting epigenetic regulators, including histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi), and DNA methyltransferase inhibitors (DNMTi). We also discuss and summarize current drugs in preclinical and clinical trials, offering insights into their potential for improving outcomes for MNA NB patients.
Collapse
Affiliation(s)
- Soraya Epp
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Shin Mei Chuah
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Melinda Halasz
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
3
|
MYCN in Neuroblastoma: "Old Wine into New Wineskins". Diseases 2021; 9:diseases9040078. [PMID: 34842635 PMCID: PMC8628738 DOI: 10.3390/diseases9040078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
MYCN Proto-Oncogene, BHLH Transcription Factor (MYCN) has been one of the most studied genes in neuroblastoma. It is known for its oncogenetic mechanisms, as well as its role in the prognosis of the disease and it is considered one of the prominent targets for neuroblastoma therapy. In the present work, we attempted to review the literature, on the relation between MYCN and neuroblastoma from all possible mechanistic sites. We have searched the literature for the role of MYCN in neuroblastoma based on the following topics: the references of MYCN in the literature, the gene's anatomy, along with its transcripts, the protein's anatomy, the epigenetic mechanisms regulating MYCN expression and function, as well as MYCN amplification. MYCN plays a significant role in neuroblastoma biology. Its functions and properties range from the forming of G-quadraplexes, to the interaction with miRNAs, as well as the regulation of gene methylation and histone acetylation and deacetylation. Although MYCN is one of the most primary genes studied in neuroblastoma, there is still a lot to be learned. Our knowledge on the exact mechanisms of MYCN amplification, etiology and potential interventions is still limited. The knowledge on the molecular mechanisms of MYCN in neuroblastoma, could have potential prognostic and therapeutic advantages.
Collapse
|
4
|
Nasiri-Aghdam M, Garcia-Garduño TC, Jave-Suárez LF. CELF Family Proteins in Cancer: Highlights on the RNA-Binding Protein/Noncoding RNA Regulatory Axis. Int J Mol Sci 2021; 22:11056. [PMID: 34681716 PMCID: PMC8537729 DOI: 10.3390/ijms222011056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional modifications to coding and non-coding RNAs are unquestionably a pivotal way in which human mRNA and protein diversity can influence the different phases of a transcript's life cycle. CELF (CUGBP Elav-like family) proteins are RBPs (RNA-binding proteins) with pleiotropic capabilities in RNA processing. Their responsibilities extend from alternative splicing and transcript editing in the nucleus to mRNA stability, and translation into the cytoplasm. In this way, CELF family members have been connected to global alterations in cancer proliferation and invasion, leading to their identification as potential tumor suppressors or even oncogenes. Notably, genetic variants, alternative splicing, phosphorylation, acetylation, subcellular distribution, competition with other RBPs, and ultimately lncRNAs, miRNAs, and circRNAs all impact CELF regulation. Discoveries have emerged about the control of CELF functions, particularly via noncoding RNAs, and CELF proteins have been identified as competing, antagonizing, and regulating agents of noncoding RNA biogenesis. On the other hand, CELFs are an intriguing example through which to broaden our understanding of the RBP/noncoding RNA regulatory axis. Balancing these complex pathways in cancer is undeniably pivotal and deserves further research. This review outlines some mechanisms of CELF protein regulation and their functional consequences in cancer physiology.
Collapse
Affiliation(s)
- Maryam Nasiri-Aghdam
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Texali C. Garcia-Garduño
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| |
Collapse
|
5
|
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2020; 41:961-1021. [PMID: 33155698 PMCID: PMC7906923 DOI: 10.1002/med.21750] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| | - Gang Liu
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinjie Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wa Xian
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Jennifer Foster
- Department of Pediatrics, Texas Children's Hospital, Section of Hematology-Oncology Baylor College of Medicine, Houston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Targeting the p53-MDM2 pathway for neuroblastoma therapy: Rays of hope. Cancer Lett 2020; 496:16-29. [PMID: 33007410 DOI: 10.1016/j.canlet.2020.09.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Despite being the subject of extensive research and clinical trials, neuroblastoma remains a major therapeutic challenge in pediatric oncology. The p53 protein is a central safeguard that protects cells against genome instability and malignant transformation. Mutated TP53 (the gene encoding p53) is implicated in many human cancers, but the majority of neuroblastomas have wild type p53 with intact transcriptional function. In fact, the TP53 mutation rate does not exceed 1-2% in neuroblastomas. However, overexpression of the murine double minute 2 (MDM2) gene in neuroblastoma is relatively common, and leads to inhibition of p53. It is also associated with other non-canonical p53-independent functions, including drug resistance and increased translation of MYCN and VEGF mRNA. The p53-MDM2 pathway in neuroblastoma is also modulated at several different molecular levels, including via interactions with other proteins (MYCN, p14ARF). In addition, the overexpression of MDM2 in tumors is linked to a poorer prognosis for cancer patients. Thus, restoring p53 function by inhibiting its interaction with MDM2 is a potential therapeutic strategy for neuroblastoma. A number of p53-MDM2 antagonists have been designed and studied for this purpose. This review summarizes the current understanding of p53 biology and the p53-dependent and -independent oncogenic functions of MDM2 in neuroblastoma, and also the regulation of the p53-MDM2 axis in neuroblastoma. This review also highlights the use of MDM2 as a molecular target for the disease, and describes the MDM2 inhibitors currently being investigated in preclinical and clinical studies. We also briefly explain the various strategies that have been used and future directions to take in the development of effective MDM2 inhibitors for neuroblastoma.
Collapse
|
7
|
Aravindan N, Subramanian K, Somasundaram DB, Herman TS, Aravindan S. MicroRNAs in neuroblastoma tumorigenesis, therapy resistance, and disease evolution. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1086-1105. [PMID: 31867575 PMCID: PMC6924638 DOI: 10.20517/cdr.2019.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) deriving from neural crest cells is the most common extra-cranial solid cancer at infancy. NB originates within the peripheral sympathetic ganglia in adrenal medulla and along the midline of the body. Clinically, NB exhibits significant heterogeneity stretching from spontaneous regression to rapid progression to therapy resistance. MicroRNAs (miRNAs, miRs) are small (19-22 nt in length) non-coding RNAs that regulate human gene expression at the post-transcriptional level and are known to regulate cellular signaling, growth, differentiation, death, stemness, and maintenance. Consequently, the function of miRs in tumorigenesis, progression and resistance is of utmost importance for the understanding of dysfunctional cellular pathways that lead to disease evolution, therapy resistance, and poor clinical outcomes. Over the last two decades, much attention has been devoted to understanding the functional roles of miRs in NB biology. This review focuses on highlighting the important implications of miRs within the context of NB disease progression, particularly miRs’ influences on NB disease evolution and therapy resistance. In this review, we discuss the functions of both the “oncomiRs” and “tumor suppressor miRs” in NB progression/therapy resistance. These are the critical components to be considered during the development of novel miR-based therapeutic strategies to counter therapy resistance.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karthikeyan Subramanian
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Terence S Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
8
|
Abstract
Pyrazolo[1,5-a]pyrimidines are fused N-heterocyclic systems of a pyrazole. They are considered as a key structural motif in many vital applications, such as medicinal, pharmaceuticals, pesticides, dyes and pigments. Their synthetic routes have escalated dramatically in the last decades. The current review is a recent synthetic survey of pyrazolo[ 1,5-a]pyrimidines and their applications until recently.
Collapse
Affiliation(s)
- Amal Al-Azmi
- Chemistry Department, Kuwait University, P. O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
9
|
miR-542-5p Attenuates Fibroblast Activation by Targeting Integrin α6 in Silica-Induced Pulmonary Fibrosis. Int J Mol Sci 2018; 19:ijms19123717. [PMID: 30467286 PMCID: PMC6320929 DOI: 10.3390/ijms19123717] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 11/28/2022] Open
Abstract
Silicosis is a very serious occupational disease and it features pathological manifestations of inflammatory infiltration, excessive proliferation of fibroblasts and massive depositions of the extracellular matrix in the lungs. Recent studies described the roles of a variety of microRNAs (miRNAs) in fibrotic diseases. Here, we aimed to explore the potential mechanism of miR-542-5p in the activation of lung fibroblasts. To induce a pulmonary fibrosis mouse model, silica suspension and the miR-542-5p agomir were administered to mice by intratracheal instillation and tail vein injection. We found that miR-542-5p was significantly decreased in mouse fibrotic lung tissues and up-regulation of miR-542-5p visually attenuated a series of fibrotic lesions, including alveolar structural damage, alveolar interstitial thickening and silica-induced nodule formation. The down-regulation of miR-542-5p was also observed in mouse fibroblast (NIH-3T3) treated with transforming growth factor β1 (TGF-β1). The proliferation and migration ability of NIH-3T3 cells were also inhibited by the transfection of miR-542-5p mimic. Integrin α6 (Itga6), reported as a cell surface protein associated with fibroblast proliferation, was confirmed to be a direct target of miR-542-5p. The knockdown of Itga6 significantly inhibited the phosphorylation of FAK/PI3K/AKT. In conclusion, miR-542-5p has a potential function for reducing the proliferation of fibroblasts and inhibiting silica-induced pulmonary fibrosis, which might be partially realized by directly binding to Itga6. Our data suggested that miR-542-5p might be a new therapeutic target for silicosis or other pulmonary fibrosis.
Collapse
|
10
|
Mekala JR, Naushad SM, Ponnusamy L, Arivazhagan G, Sakthiprasad V, Pal-Bhadra M. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer. Gene 2017; 641:248-258. [PMID: 29038000 DOI: 10.1016/j.gene.2017.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 10/07/2017] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are involved in the regulation of gene expression at the post-transcriptional level. MicroRNAs play an important role in cancer cell proliferation, survival and apoptosis. Epigenetic modifiers regulate the microRNA expression. Among the epigenetic players, histone deacetylases (HDACs) function as the key regulators of microRNA expression. Epigenetic machineries such as DNA and histone modifying enzymes and various microRNAs have been identified as the important contributors in cancer initiation and progression. Recent studies have shown that developing innovative microRNA-targeting therapies might improve the human health, specifically against the disease areas of high unmet medical need. Thus microRNA based therapeutics are gaining importance for anti-cancer therapy. Studies on Triple negative breast cancer (TNBC) have revealed the early relapse and poor overall survival of patients which needs immediate therapeutic attention. In this report, we focus the effect of HDAC inhibitors on TNBC cell proliferation, regulation of microRNA gene expression by a series of HDAC genes, chromatin epigenetics, epigenetic remodelling at miR-200 promoter and its modulation by various HDACs. We also discuss the need for identifying novel HDAC inhibitors for modulation of miR-200 in triple negative breast cancer.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613401, India.
| | | | - Lavanya Ponnusamy
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613401, India
| | - Gayatri Arivazhagan
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613401, India
| | - Vaishnave Sakthiprasad
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613401, India
| | - Manika Pal-Bhadra
- CSIR - Centre for Chemical Biology, CSIR-IICT, Hyderabad 500007, Telangana, India
| |
Collapse
|
11
|
MicroRNA: a connecting road between apoptosis and cholesterol metabolism. Tumour Biol 2016; 37:8529-54. [PMID: 27105614 DOI: 10.1007/s13277-016-4988-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Resistance to apoptosis leads to tumorigenesis and failure of anti-cancer therapy. Recent studies also highlight abrogated lipid/cholesterol metabolism as one of the root causes of cancer that can lead to metastatic transformations. Cancer cells are dependent on tremendous supply of cellular cholesterol for the formation of new membranes and continuation of cell signaling. Cholesterol homeostasis network tightly regulates this metabolic need of cancer cells on cholesterol and other lipids. Genetic landscape is also shared between apoptosis and cholesterol metabolism. MicroRNAs (miRNAs) are the new fine tuners of signaling pathways and cellular processes and are known for their ability to post-transcriptionally repress gene expression in a targeted manner. This review summarizes the current knowledge about the cross talk between apoptosis and cholesterol metabolism via miRNAs. In addition, we also emphasize herein recent therapeutic modulations of specific miRNAs and their promising potential for the treatment of deadly diseases including cancer and cholesterol related pathologies. Understanding of the impact of miRNA-based regulation of apoptosis and metabolic processes is still at its dawn and needs further research for the development of future miRNA-based therapies. As both these physiological processes affect cellular homeostasis, we believe that this comprehensive summary of miRNAs modulating both apoptosis and cholesterol metabolism will open uncharted territory for scientific exploration and will provide the foundation for discovering novel drug targets for cancer and metabolic diseases.
Collapse
|
12
|
Zhou Y, Zhao RH, Tseng KF, Li KP, Lu ZG, Liu Y, Han K, Gan ZH, Lin SC, Hu HY, Min DL. Sirolimus induces apoptosis and reverses multidrug resistance in human osteosarcoma cells in vitro via increasing microRNA-34b expression. Acta Pharmacol Sin 2016; 37:519-29. [PMID: 26924291 DOI: 10.1038/aps.2015.153] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
AIM Multi-drug resistance poses a critical bottleneck in chemotherapy. Given the up-regulation of mTOR pathway in many chemoresistant cancers, we examined whether sirolimus (rapamycin), a first generation mTOR inhibitor, might induce human osteosarcoma (OS) cell apoptosis and increase the sensitivity of OS cells to anticancer drugs in vitro. METHODS Human OS cell line MG63/ADM was treated with sirolimus alone or in combination with doxorubicin (ADM), gemcitabine (GEM) or methotrexate (MTX). Cell proliferation and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. MiRNAs in the cells were analyzed with miRNA microarray. The targets of miR-34b were determined based on TargetScan analysis and luciferase reporter assays. The expression of relevant mRNA and proteins was measured using qRT-PCR and Western blotting. MiR-34, PAK1 and ABCB1 levels in 40 tissue samples of OS patients were analyzed using qRT-PCR and in situ hybridization assays. RESULTS Sirolimus (1-100 nmol/L) dose-dependently suppressed the cell proliferation (IC50=23.97 nmol/L) and induced apoptosis. Sirolimus (10 nmol/L) significantly sensitized the cells to anticancer drugs, leading to decreased IC50 values of ADM, GEM and MTX (from 25.48, 621.41 and 21.72 μmol/L to 4.93, 73.92 and 6.77 μmol/L, respectively). Treatment of with sirolimus increased miR-34b levels by a factor of 7.5 in the cells. Upregulation of miR-34b also induced apoptosis and increased the sensitivity of the cells to the anticancer drugs, whereas transfection with miR-34b-AMO, an inhibitor of miR-34b, reversed the anti-proliferation effect of sirolimus. Two key regulators of cell cycle, apoptosis and multiple drug resistance, PAK1 and ABCB1, were demonstrated to be the direct targets of miR-34b. In 40 tissue samples of OS patients, significantly higher miR-34 ISH score and lower PAK5 and ABCB1 scores were detected in the chemo-sensitive group. CONCLUSION Sirolimus increases the sensitivity of human OS cells to anticancer drugs in vitro by up-regulating miR-34b interacting with PAK1 and ABCB1. A low miR-34 level is an indicator of poor prognosis in OS patients.
Collapse
|
13
|
Liu C, Yu H, Zhang Y, Li D, Xing X, Chen L, Zeng X, Xu D, Fan Q, Xiao Y, Chen W, Wang Q. Upregulation of miR-34a-5p antagonizes AFB1-induced genotoxicity in F344 rat liver. Toxicon 2015; 106:46-56. [PMID: 26385312 DOI: 10.1016/j.toxicon.2015.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 02/05/2023]
Abstract
Aflatoxin B1 (AFB1) is a well-known human hepatotoxicant and genotoxicant. Recent studies demonstrated that aberrant miRNA expression patterns were correlated with the cellular and genetic lesions induced by chemicals. To explore the role of miRNAs in AFB1-induced hepatotoxicity and genotoxicity, we examined alterations in miRNA expression patterns in F334 rat livers after exposure to 100 μg/kg or 200 μg/kg AFB1 for 28 days. Using high-throughput sequencing, we discovered that rno-miR-34a-5p, rno-miR-200b-3p, and rno-miR-429 were up-regulated and that rno-miR-130a-3p was down-regulated in liver tissue from rats that received 200 μg/kg of AFB1; this finding was validated by real-time PCR. AFB1 treatment resulted in the upregulation of rno-miR-34a-5p and rno-miR-200b-3p in the rat H-4-II-E cell line similar to our in vivo observations. Moreover, rno-miR-34a-5p was transcriptionally elevated via p53 activation after AFB1 exposure. Upregulation of rno-miR-34a-5p suppressed the expression of the cell cycle-related genes CCND1, CCNE2 and MET and led to cell cycle arrest in the G0-G1 phase. The CBMN assay indicated that inhibition of rno-miR-34a-5p and p53 expression aggravated the DNA damage induced by AFB1, which might be associated with shortening of the DNA damage repair period. Circulating miR-34a-5p in rat sera preceded a significant increase in ALT activity and other miRNAs in the 100 μg/kg AFB1 group. These observations demonstrated that rno-miR-34a-5p responded sensitively to AFB1 exposure and facilitated p53 repair of DNA damage by impacting the cell cycle. Thus, circulating rno-miR-34a-5p may be a sensitive indicator for the induction of hepatic genotoxicity by AFB1 in rats.
Collapse
Affiliation(s)
- Caixia Liu
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China; Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Haohui Yu
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China; Department of Hospital Infection Control, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yan Zhang
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Xing
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Zeng
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Dandan Xu
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiming Fan
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Song N, Ma X, Li H, Zhang Y, Wang X, Zhou P, Zhang X. microRNA-107 functions as a candidate tumor suppressor gene in renal clear cell carcinoma involving multiple genes. Urol Oncol 2015; 33:205.e1-11. [DOI: 10.1016/j.urolonc.2015.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/09/2015] [Accepted: 02/03/2015] [Indexed: 11/28/2022]
|
15
|
Wu C, Huang W, Guo Y, Xia P, Sun X, Pan X, Hu W. Oxymatrine inhibits the proliferation of prostate cancer cells in vitro and in vivo. Mol Med Rep 2015; 11:4129-34. [PMID: 25672672 PMCID: PMC4394963 DOI: 10.3892/mmr.2015.3338] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
Oxymatrine is an alkaloid, which is derived from the traditional Chinese herb, Sophora flavescens Aiton. Oxymatrine has been shown to exhibit anti-inflammatory, antiviral, and anticancer properties. The present study aimed to investigate the anticancer effects of oxymatrine in human prostate cancer cells, and the underlying molecular mechanisms of these effects. An MTT assay demonstrated that oxymatrine significantly inhibited the proliferation of prostate cancer cells in a time- and dose-dependent manner. In addition, flow cytometry and a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay suggested that oxymatrine treatment may induce prostate cancer cell apoptosis in a dose-dependent manner. Furthermore, western blot analysis demonstrated a significant increase in the expression of p53 and bax, and a significant decrease in that of Bcl-2, in prostrate cancer cells in a dose-dependent manner. In vivo analysis demonstrated that oxymatrine inhibited tumor growth following subcutaneous inoculation of prostate cancer cells into nude mice. The results of the present study suggested that the antitumor properties of oxymatrine, may be associated with the inhibition of cell proliferation, and induction of apoptosis, via the regulation of apoptosis-associated gene expression. Therefore, the results may provide a novel approach for the development of prostate cancer therapy using oxymatrine, which is derived from the traditional Chinese herb, Sophora flavescens.
Collapse
Affiliation(s)
- Cunzao Wu
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weiping Huang
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Guo
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Peng Xia
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Xianbin Sun
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Xiaodong Pan
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Weilie Hu
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
16
|
Guan Z, Hillrichs K, Ünlü C, Rissanen K, Nieger M, Schmidt A. Synthesis of 2-anilinobenzimidates, anthranilamides, and 2,3-dihydroquinazolin-4(1H)-ones from N-heterocyclic carbenes of indazole. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.11.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Sipert CR, Morandini AC, Dionísio TJ, Trachtenberg AJ, Kuo WP, Santos CF. MicroRNA-146a and microRNA-155 show tissue-dependent expression in dental pulp, gingival and periodontal ligament fibroblasts in vitro. J Oral Sci 2014; 56:157-64. [PMID: 24930753 PMCID: PMC11067546 DOI: 10.2334/josnusd.56.157] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs showing a tissue-specific expression pattern, and whose function is to suppress protein synthesis. In this study, we hypothesized that expression of miRNAs would differ among fibroblasts from dental pulp (DPF), gingiva (GF) and periodontal ligament (PLF) in vitro. Once established by an explant technique, DPF, GF and PLF were collected for RNA isolation and subjected to a miRNA microarray. Next, cells were stimulated with E. coli lipopolysaccharide (LPS) for 24 h and then collected for RNA isolation. Expression of miR-146a and miR-155 was investigated by qPCR. Microarray screening revealed several miRNAs that showed specifically high expression in at least one of the fibroblast subtypes. These molecules are potentially involved in the regulation of extracellular matrix turnover and production of inflammatory mediators. Microarray analysis showed that both miR-146a and miR-155 were among the miRNAs expressed exclusively in GF. qPCR demonstrated significant upregulation of miR-146a only in GF after LPS stimulation, whereas basal expression of miR-155 was higher in GF than in the other cell subtypes. LPS downregulated the expression of miR-155 only in GF. Our results suggest that the expression and regulation of miR-146a and miR-155 are more pronounced in GF than in DPF and PLF.
Collapse
Affiliation(s)
- Carla R. Sipert
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Ana C. Morandini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Thiago J. Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Alexander J. Trachtenberg
- Harvard Catalyst - Laboratory for Innovative Translational Technologies, Harvard Medical School, Boston, MA, USA
| | - Winston P. Kuo
- Harvard Clinical and Translational Science Center, Laboratory for Innovative Translational Technologies, Harvard Medical School, Boston, MA, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Carlos F. Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| |
Collapse
|
18
|
Abstract
MicroRNAs exert their biologic effects by targeting specific mRNAs for degradation or translational inhibition. MicroRNA-mediated regulation is complex, potentially affecting expression of the host gene, related enzymes within the same pathway or apparently distinct targets. miR-107 is found to be implicated in the pathogenesis of some diseases. This review was performed to sum up the role of miR-107 and its signaling pathways in renal diseases.
Collapse
Affiliation(s)
- Zong-Pei Jiang
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | | |
Collapse
|