1
|
Bravo Sánchez E, Nolasco Ruíz CJ, Gómez-Barroso M, Cortés Rojo C, Rodríguez Orozco AR, Saavedra Molina A, Manzo Ávalos S, Montoya Pérez R. Diazoxide and moderate-intensity exercise improve skeletal muscle function by decreasing oxidants and enhancing antioxidant defenses in hypertensive male rats. Physiol Rep 2024; 12:e16026. [PMID: 38653584 DOI: 10.14814/phy2.16026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
High sodium intake is decisive in the incidence increase and prevalence of hypertension, which has an impact on skeletal muscle functionality. Diazoxide is an antihypertensive agent that inhibits insulin secretion and is an opener of KATP channels (adosine triphosphate sensitive potasium channels). For this reason, it is hypothesized that moderate-intensity exercise and diazoxide improve skeletal muscle function by reducing the oxidants in hypertensive rats. Male Wistar rats were assigned into eight groups: control (CTRL), diazoxide (DZX), exercise (EX), exercise + diazoxide (EX + DZX), hypertension (HTN), hypertension + diazoxide (HTN + DZX), hypertension + exercise (HTN + EX), and hypertension + exercise + diazoxide (HTN + EX + DZX). To induce hypertension, the rats received 8% NaCl dissolved in water orally for 30 days; in the following 8 weeks, 4% NaCl was supplied to maintain the pathology. The treatment with physical exercise of moderate intensity lasted 8 weeks. The administration dose of diazoxide was 35 mg/kg intraperitoneally for 14 days. Tension recording was performed on the extensor digitorum longus and the soleus muscle. Muscle homogenates were used to measure oxidants using fluorescent probe and the activity of antioxidant systems. Diazoxide and moderate-intensity exercise reduced oxidants and increased antioxidant defenses.
Collapse
Affiliation(s)
- Estefanía Bravo Sánchez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - César J Nolasco Ruíz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Mariana Gómez-Barroso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Christian Cortés Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alain R Rodríguez Orozco
- Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alfredo Saavedra Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Salvador Manzo Ávalos
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Rocío Montoya Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
2
|
Kuznetsov KM, Baigildin VA, Solomatina AI, Galenko EE, Khlebnikov AF, Sokolov VV, Tunik SP, Shakirova JR. Polymeric Nanoparticles with Embedded Eu(III) Complexes as Molecular Probes for Temperature Sensing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248813. [PMID: 36557943 PMCID: PMC9785794 DOI: 10.3390/molecules27248813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Three novel luminescent Eu(III) complexes, Eu1-Eu3, have been synthesized and characterized with CHN analysis, mass-spectrometry and 1H NMR spectroscopy. The complexes display strong emission in dichloromethane solution upon excitation at 405 and 800 nm with a quantum yield from 18.3 to 31.6%, excited-state lifetimes in the range of 243-1016 ms at 20 °C, and lifetime temperature sensitivity of 0.9%/K (Eu1), 1.9%/K (Eu2), and 1.7%/K (Eu3). The chromophores were embedded into biocompatible latex nanoparticles (NPs_Eu1-NPs_Eu3) that prevented emission quenching and kept the photophysical characteristics of emitters unchanged with the highest temperature sensitivity of 1.3%/K (NPs_Eu2). For this probe cytotoxicity, internalization dynamics and localization in CHO-K1 cells were studied together with lifetime vs. temperature calibration in aqueous solution, phosphate buffer, and in a mixture of growth media and fetal bovine serum. The obtained data were then averaged to give the calibration curve, which was further used for temperature estimation in biological samples. The probe was stable in physiological media and displayed good reproducibility in cycling experiments between 20 and 40 °C. PLIM experiments with thermostated CHO-K1 cells incubated with NPs_Eu2 indicated that the probe could be used for temperature estimation in cells including the assessment of temperature variations upon chemical shock (sample treatment with mitochondrial uncoupling reagent).
Collapse
Affiliation(s)
- Kirill M. Kuznetsov
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Vadim A. Baigildin
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Anastasia I. Solomatina
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Ekaterina E. Galenko
- Department of Organic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Alexander F. Khlebnikov
- Department of Organic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Victor V. Sokolov
- Department of Organic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Sergey P. Tunik
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
- Correspondence: (S.P.T.); (J.R.S.)
| | - Julia R. Shakirova
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
- Correspondence: (S.P.T.); (J.R.S.)
| |
Collapse
|
3
|
Shibaeva KO, Romanov SR, Moryasheva AD, Shulaeva MP, Pozdeev OK, Bakhtiyarova YV. One-Pot Synthesis of Quaternary Phosphonium Salts Based on Tertiary Phosphines and (R)-(+)-Pulegone. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222070088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Gómez-Barroso M, Moreno-Calderón KM, Sánchez-Duarte E, Cortés-Rojo C, Saavedra-Molina A, Rodríguez-Orozco AR, Montoya-Pérez R. Diazoxide and Exercise Enhance Muscle Contraction during Obesity by Decreasing ROS Levels, Lipid Peroxidation, and Improving Glutathione Redox Status. Antioxidants (Basel) 2020; 9:antiox9121232. [PMID: 33291828 PMCID: PMC7762033 DOI: 10.3390/antiox9121232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity causes insulin resistance and hyperinsulinemia which causes skeletal muscle dysfunction resulting in a decrease in contraction force and a reduced capacity to avoid fatigue, which overall, causes an increase in oxidative stress. KATP channel openers such as diazoxide and the implementation of exercise protocols have been reported to be actively involved in protecting skeletal muscle against metabolic stress; however, the effects of diazoxide and exercise on muscle contraction and oxidative stress during obesity have not been explored. This study aimed to determine the effect of diazoxide in the contraction of skeletal muscle of obese male Wistar rats (35 mg/kg), and with an exercise protocol (five weeks) and the combination from both. Results showed that the treatment with diazoxide and exercise improved muscular contraction, showing an increase in maximum tension and total tension due to decreased ROS and lipid peroxidation levels and improved glutathione redox state. Therefore, these results suggest that diazoxide and exercise improve muscle function during obesity, possibly through its effects as KATP channel openers.
Collapse
Affiliation(s)
- Mariana Gómez-Barroso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Koré M. Moreno-Calderón
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Elizabeth Sánchez-Duarte
- Departamento de Ciencias Aplicadas al Trabajo, Universidad de Guanajuato Campus León, Eugenio Garza Sada 572, Lomas del Campestre Sección 2, León, Guanajuato 37150, Mexico;
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Alain R. Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón, Bosque Cuauhtémoc, Morelia, Michoacán 58020, Mexico;
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
- Correspondence:
| |
Collapse
|
5
|
Chhabra S, Shah K. The novel scaffold 1,2,4-benzothiadiazine-1,1-dioxide: a review. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Mouithys-Mickalad A, Ceusters J, Charif M, El Moualij B, Schoumacher M, Plyte S, Franck T, Bettendorff L, Pirotte B, Serteyn D, de Tullio P. Modulation of mitochondrial respiration rate and calcium-induced swelling by new cromakalim analogues. Chem Biol Interact 2020; 331:109272. [PMID: 33010220 DOI: 10.1016/j.cbi.2020.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
A cellular model of cardiomyocytes (H9c2 cell line) and mitochondria isolated from mouse liver were used to understand the drug action of BPDZ490 and BPDZ711, two benzopyran analogues of the reference potassium channel opener cromakalim, on mitochondrial respiratory parameters and swelling, by comparing their effects with those of the parent compound cromakalim. For these three compounds, the oxygen consumption rate (OCR) was determined by high-resolution respirometry (HRR) and their impact on adenosine triphosphate (ATP) production and calcium-induced mitochondrial swelling was investigated. Cromakalim did not modify neither the OCR of H9c2 cells and the ATP production nor the Ca-induced swelling. By contrast, the cromakalim analogue BPDZ490 (1) induced a strong increase of OCR, while the other benzopyran analogue BPDZ711 (2) caused a marked slowdown. For both compounds, 1 displayed a biphasic behavior while 2 still showed an inhibitory effect. Both compounds 1 and 2 were also found to decrease the ATP synthesis, with pronounced effect for 2, while cromakalim remained without effect. Overall, these results indicate that cromakalim, as parent molecule, does not induce per se any direct effect on mitochondrial respiratory function neither on whole cells nor on isolated mitochondria whereas both benzopyran analogues 1 and 2 display totally opposite behavior profiles, suggesting that compound 1, by increasing the maximal respiration capacity, might behave as a mild uncoupling agent and compound 2 is taken as an inhibitor of the mitochondrial electron-transfer chain.
Collapse
Affiliation(s)
- Ange Mouithys-Mickalad
- Center for Oxygen, Research & Development (CORD) & Center for Interdisciplinary Research on Medicines (CIRM), Institute of Chemistry, B6a, ULiège, Allée du six Août, 11, B-4000, Liège, Belgium.
| | - Justine Ceusters
- Center for Oxygen, Research & Development (CORD) & Center for Interdisciplinary Research on Medicines (CIRM), Institute of Chemistry, B6a, ULiège, Allée du six Août, 11, B-4000, Liège, Belgium
| | - Mounia Charif
- Centre de Recherche sur les Protéines Prions (CRPP), ULiège, Quartier Hôpital, 15, Avenue Hippocrate, B-4000, Liège, Belgium
| | - Benaïssa El Moualij
- Centre de Recherche sur les Protéines Prions (CRPP), ULiège, Quartier Hôpital, 15, Avenue Hippocrate, B-4000, Liège, Belgium
| | - Mathieu Schoumacher
- Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), ULiège, Quartier Hôpital, 15, Avenue de l'Hospital, B-4000, Liège, Belgium
| | - Simon Plyte
- Merus, Closing in on Cancer, Immuno-Oncology, Yalelaan 62, 3584 CM, Utrecht, the Netherlands
| | - Thierry Franck
- Center for Oxygen, Research & Development (CORD) & Center for Interdisciplinary Research on Medicines (CIRM), Institute of Chemistry, B6a, ULiège, Allée du six Août, 11, B-4000, Liège, Belgium; Department of Clinical Sciences, Faculty of Veterinary Medicine, Quartier Vallée 2, 5A-5D, Avenue de Cureghem, ULiège, B-4000, Liège, Belgium
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-neurosciences, ULiège, Quartier Hôpital, 15, Avenue Hippocrate, B-4000, Liège, Belgium
| | - Bernard Pirotte
- Center for Oxygen, Research & Development (CORD) & Center for Interdisciplinary Research on Medicines (CIRM), Institute of Chemistry, B6a, ULiège, Allée du six Août, 11, B-4000, Liège, Belgium; Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), ULiège, Quartier Hôpital, 15, Avenue de l'Hospital, B-4000, Liège, Belgium
| | - Didier Serteyn
- Center for Oxygen, Research & Development (CORD) & Center for Interdisciplinary Research on Medicines (CIRM), Institute of Chemistry, B6a, ULiège, Allée du six Août, 11, B-4000, Liège, Belgium
| | - Pascal de Tullio
- Center for Oxygen, Research & Development (CORD) & Center for Interdisciplinary Research on Medicines (CIRM), Institute of Chemistry, B6a, ULiège, Allée du six Août, 11, B-4000, Liège, Belgium; Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), ULiège, Quartier Hôpital, 15, Avenue de l'Hospital, B-4000, Liège, Belgium
| |
Collapse
|
7
|
Han J, Zhou R, Huang C, Zeng Q, Long Q, Zhang Q, Cong H, Zhou Q, Wei G, Liu M. Efficient synthesis of sulfonylguanidines via reaction of tetra-substituted urine with ArSO2NCO. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Vyas VK, Parikh P, Ramani J, Ghate M. Medicinal Chemistry of Potassium Channel Modulators: An Update of Recent Progress (2011-2017). Curr Med Chem 2019; 26:2062-2084. [PMID: 29714134 DOI: 10.2174/0929867325666180430152023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/22/2017] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Potassium (K+) channels participate in many physiological processes, cardiac function, cell proliferation, neuronal signaling, muscle contractility, immune function, hormone secretion, osmotic pressure, changes in gene expression, and are involved in critical biological functions, and in a variety of diseases. Potassium channels represent a large family of tetrameric membrane proteins. Potassium channels activation reduces excitability, whereas channel inhibition increases excitability. OBJECTIVE Small molecule K+ channel activators and inhibitors interact with voltage-gated, inward rectifying, and two-pore tandem potassium channels. Due to their involvement in biological functions, and in a variety of diseases, small molecules as potassium channel modulators have received great scientific attention. METHODS In this review, we have compiled the literature, patents and patent applications (2011 to 2017) related to different chemical classes of potassium channel openers and blockers as therapeutic agents for the treatment of various diseases. Many different chemical classes of selective small molecule have emerged as potassium channel modulators over the past years. CONCLUSION This review discussed the current understanding of medicinal chemistry research in the field of potassium channel modulators to update the key advances in this field.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Palak Parikh
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Jonali Ramani
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Manjunath Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| |
Collapse
|
9
|
Nazari M, Nematpour M, Rezaee E, Jahani M, Tabatabai SA. A new route for the synthesis of functionalized benzothiadiazine 1,1-dioxide derivatives via intramolecular C–H activation reactions of N,N′,N′′-trisubstituted guanidines and benzenesulfonylchloride. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1499743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Maryam Nazari
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Manijeh Nematpour
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Jahani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
AP39, a Mitochondria-Targeted Hydrogen Sulfide Donor, Supports Cellular Bioenergetics and Protects against Alzheimer's Disease by Preserving Mitochondrial Function in APP/PS1 Mice and Neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8360738. [PMID: 27057285 PMCID: PMC4753001 DOI: 10.1155/2016/8360738] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/11/2023]
Abstract
Increasing evidence suggests that mitochondrial functions are altered in AD and play an important role in AD pathogenesis. It has been established that H2S homeostasis is balanced in AD. The emerging mitochondrial roles of H2S include antioxidation, antiapoptosis, and the modulation of cellular bioenergetics. Here, using primary neurons from the well-characterized APP/PS1 transgenic mouse model, we studied the effects of AP39 (a newly synthesized mitochondrially targeted H2S donor) on mitochondrial function. AP39 increased intracellular H2S levels, mainly in mitochondrial regions. AP39 exerted dose-dependent effects on mitochondrial activity in APP/PS1 neurons, including increased cellular bioenergy metabolism and cell viability at low concentrations (25–100 nM) and decreased energy production and cell viability at a high concentration (250 nM). Furthermore, AP39 (100 nM) increased ATP levels, protected mitochondrial DNA, and decreased ROS generation. AP39 regulated mitochondrial dynamics, shifting from fission toward fusion. After 6 weeks, AP39 administration to APP/PS1 mice significantly ameliorated their spatial memory deficits in the Morris water maze and NORT and reduced Aβ deposition in their brains. Additionally, AP39 inhibited brain atrophy in APP/PS1 mice. Based on these results, AP39 was proposed as a promising drug candidate for AD treatment, and its anti-AD mechanism may involve protection against mitochondrial damage.
Collapse
|
11
|
Yamakoshi H, Palonpon A, Dodo K, Ando J, Kawata S, Fujita K, Sodeoka M. A sensitive and specific Raman probe based on bisarylbutadiyne for live cell imaging of mitochondria. Bioorg Med Chem Lett 2015; 25:664-7. [DOI: 10.1016/j.bmcl.2014.11.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023]
|
12
|
Szczesny B, Módis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, Wood ME, Whiteman M, Szabo C. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 2014; 41:120-30. [PMID: 24755204 DOI: 10.1016/j.niox.2014.04.008] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 12/12/2022]
Abstract
The purpose of the current study was to investigate the effect of the recently synthesized mitochondrially-targeted H2S donor, AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) triphenylphosphonium bromide], on bioenergetics, viability, and mitochondrial DNA integrity in bEnd.3 murine microvascular endothelial cells in vitro, under normal conditions, and during oxidative stress. Intracellular H2S was assessed by the fluorescent dye 7-azido-4-methylcoumarin. For the measurement of bioenergetic function, the XF24 Extracellular Flux Analyzer was used. Cell viability was estimated by the combination of the MTT and LDH methods. Oxidative protein modifications were measured by the Oxyblot method. Reactive oxygen species production was monitored by the MitoSOX method. Mitochondrial and nuclear DNA integrity were assayed by the Long Amplicon PCR method. Oxidative stress was induced by addition of glucose oxidase. Addition of AP39 (30-300 nM) to bEnd.3 cells increased intracellular H2S levels, with a preferential response in the mitochondrial regions. AP39 exerted a concentration-dependent effect on mitochondrial activity, which consisted of a stimulation of mitochondrial electron transport and cellular bioenergetic function at lower concentrations (30-100 nM) and an inhibitory effect at the higher concentration of 300 nM. Under oxidative stress conditions induced by glucose oxidase, an increase in oxidative protein modification and an enhancement in MitoSOX oxidation was noted, coupled with an inhibition of cellular bioenergetic function and a reduction in cell viability. AP39 pretreatment attenuated these responses. Glucose oxidase induced a preferential damage to the mitochondrial DNA; AP39 (100 nM) pretreatment protected against it. In conclusion, the current paper documents antioxidant and cytoprotective effects of AP39 under oxidative stress conditions, including a protection against oxidative mitochondrial DNA damage.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kazunori Yanagi
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ciro Coletta
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sophie Le Trionnaire
- University of Exeter Medical School, St. Luke's Campus, Exeter, England, United Kingdom
| | - Alexis Perry
- Biosciences, College of Life and Environmental Science, University of Exeter, England, United Kingdom
| | - Mark E Wood
- Biosciences, College of Life and Environmental Science, University of Exeter, England, United Kingdom
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Exeter, England, United Kingdom.
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|