1
|
Graczyk A, Radzikowska-Cieciura E, Kaczmarek R, Pawlowska R, Chworos A. Modified Nucleotides for Chemical and Enzymatic Synthesis of Therapeutic RNA. Curr Med Chem 2023; 30:1320-1347. [PMID: 36239720 DOI: 10.2174/0929867330666221014111403] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
In recent years, RNA has emerged as a medium with a broad spectrum of therapeutic potential, however, for years, a group of short RNA fragments was studied and considered therapeutic molecules. In nature, RNA plays both functions, with coding and non-coding potential. For RNA, like any other therapeutic, to be used clinically, certain barriers must be crossed. Among them, there are biocompatibility, relatively low toxicity, bioavailability, increased stability, target efficiency and low off-target effects. In the case of RNA, most of these obstacles can be overcome by incorporating modified nucleotides into its structure. This may be achieved by both, in vitro and in vivo biosynthetic methods, as well as chemical synthesis. Some advantages and disadvantages of each approach are summarized here. The wide range of nucleotide analogues has been tested for their utility as monomers for RNA synthesis. Many of them have been successfully implemented, and a lot of pre-clinical and clinical studies involving modified RNA have been carried out. Some of these medications have already been introduced into clinics. After the huge success of RNA-based vaccines that were introduced into widespread use in 2020, and the introduction to the market of some RNA-based drugs, RNA therapeutics containing modified nucleotides appear to be the future of medicine.
Collapse
Affiliation(s)
- Anna Graczyk
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Renata Kaczmarek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
2
|
Ramesh NG. From Glycals to Nitrogen Heterocycles and Carbocycles via "Cleavage-Intramolecular Recombination Strategy". CHEM REC 2021; 21:2930-2957. [PMID: 34472196 DOI: 10.1002/tcr.202100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
Glycals (carbohydrate enol-ethers) have enjoyed profound applications in organic synthesis for more than a century. They not only serve as versatile glycosyl donors or as substrates for Ferrier rearrangement, but also find extensive synthetic applications especially as a "chiral pool" for accomplishing the synthesis of a variety of natural and biologically important compounds. As cyclic enol ethers, they demonstrate high reactivity and are among the most and variously transformable monosaccharide derivatives. The uniqueness of the reactivity of glycals is that they can be synthetically tuned to get a library of derivatives through stereo- and regioselective introduction of a variety of functional groups at C1, C2, C3 as well as C4 carbons of the sugar. We have developed a practical approach for stereoselective mono- and diamination of glycals and over the years utilized these scaffolds for the synthesis of a variety of biologically important nitrogen heterocycles and carbocycles through a "Diversity Oriented Approach". Our synthetic strategy in this direction mainly relied on the cleavage of ring O-C bond of the sugar followed by an "intramolecular recombination" reaction. Utilizing this strategy, we have accomplished the synthesis of several biologically important natural products, their analogues and related unnatural derivatives. Examples of such compounds reported from our group include polyhydroxypyrrolidines, DMDP, anisomycin, steviamine, pochonicine, conduramines, bulgecinine, aminocyclitols, azepanes, 4-hydroxy-D-proline, azanucleosides and their analogues. A personal account highlighting these syntheses is presented here.
Collapse
Affiliation(s)
- Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
3
|
Verma V, Maity J, Maikhuri VK, Sharma R, Ganguly HK, Prasad AK. Double-headed nucleosides: Synthesis and applications. Beilstein J Org Chem 2021; 17:1392-1439. [PMID: 34194579 PMCID: PMC8204177 DOI: 10.3762/bjoc.17.98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Double-headed nucleoside monomers have immense applications for studying secondary nucleic acid structures. They are also well-known as antimicrobial agents. This review article accounts for the synthetic methodologies and the biological applications of double-headed nucleosides.
Collapse
Affiliation(s)
- Vineet Verma
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen’s College, University of Delhi, Delhi-110 007, India
| | - Vipin K Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Ritika Sharma
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Himal K Ganguly
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata-700 054, India
| | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| |
Collapse
|
4
|
Mishra UK, Sanghvi YS, Egli M, Ramesh NG. Supramolecular Architecture through Self-Organization of Janus-Faced Homoazanucleosides. J Org Chem 2021; 86:367-378. [PMID: 33284627 DOI: 10.1021/acs.joc.0c02140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Design of Janus-faced or double-headed homoazanucleosides with the possibility to undergo self-organization through base pairing has been conceptualized and accomplished. The synthetic strategy demonstrates the unique ability to introduce two similar or complementary nucleobases on opposite arms of a chiral polyhydroxypyrrolidine while also ensuring that their faces are anti to each other to allow only intermolecular interactions between the nucleobases, an essential requisite for self-assembly. Single-crystal X-ray structures were determined for all three types of homoazanucleosides, one possessing two adenine molecules, the other with two thymine moieties, and the third containing both adenine and thymine. The crystal structures of all three display noncovalent interactions, including Watson-Crick base pairing, Hoogsteen H-bonding, and π-π stacking, resulting in unusual supramolecular patterns. The most striking supramolecular motif among them, which emerged from the crystal structure of the homoazanucleoside containing both adenine and thymine, is a left-handed helix formed through Watson-Crick pairing between nucleobases. The present study thus forms a prelude to the design of Janus-faced building blocks to establish helical pillars as well as lateral branches that together define a three-dimensional (3D) lattice. The ready accessibility of these molecules is expected to spur the next generation of discoveries in the design of functional nanomaterials.
Collapse
Affiliation(s)
- Umesh K Mishra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Hornum M, Stendevad J, Sharma PK, Kumar P, Nielsen RB, Petersen M, Nielsen P. Base-Pairing Properties of Double-Headed Nucleotides. Chemistry 2019; 25:7387-7395. [PMID: 30942502 DOI: 10.1002/chem.201901077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 12/28/2022]
Abstract
Nucleotides that contain two nucleobases (double-headed nucleotides) have the potential to condense the information of two separate nucleotides into one. This presupposes that both bases must successfully pair with a cognate strand. Here, double-headed nucleotides that feature cytosine, guanine, thymine, adenine, hypoxanthine, and diaminopurine linked to the C2'-position of an arabinose scaffold were developed and examined in full detail. These monomeric units were efficiently prepared by convergent synthesis and incorporated into DNA oligonucleotides by means of the automated phosphoramidite method. Their pairing efficiency was assessed by UV-based melting-temperature analysis in several contexts and extensive molecular dynamics studies. Altogether, the results show that these double-headed nucleotides have a well-defined structure and invariably behave as functional dinucleotide mimics in DNA duplexes.
Collapse
Affiliation(s)
- Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Julie Stendevad
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Pawan Kumar
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Rasmus B Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Michael Petersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
6
|
Beck K, Reslow-Jacobsen C, Hornum M, Henriksen C, Nielsen P. A double-headed nucleotide with two cytosines: DNA with condensed information and improved duplex stability. Bioorg Med Chem Lett 2019; 29:740-743. [PMID: 30655212 DOI: 10.1016/j.bmcl.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
Double-headed nucleotide monomers are capable of condensing the genetic information of DNA. Herein, a double-headed nucleotide with two cytosine bases (CC) is constructed. The additional cytosine is connected through a methylene linker to the 2'-position of arabinocytidine. The nucleotide is incorporated into oligonucleotides and its effect on duplex stability is studied. For single incorporations, a thermal stabilization of 4.0 °C is found as compared to the unmodified duplex and it is shown that both nucleobases of CC participate in Watson-Crick base pairing. In combination with the previously published UT monomer, it is also shown that multiple incorporations are tolerated. For instance, a 16-mer sequence is targeted by a 13-mer oligonucleotide by using one CC and two UT monomers without compromising the overall duplex stability. Finally, the potential of double-headed nucleotides in triplex-forming oligonucleotides is studied, however, with the conclusion that the present design is not well-suited for this function.
Collapse
Affiliation(s)
- Kasper Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Charlotte Reslow-Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Christian Henriksen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
7
|
Hornum M, Sharma PK, Reslow-Jacobsen C, Kumar P, Petersen M, Nielsen P. Condensing the information in DNA with double-headed nucleotides. Chem Commun (Camb) 2018; 53:9717-9720. [PMID: 28820207 DOI: 10.1039/c7cc05047j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A normal duplex holds as many Watson-Crick base pairs as the number of nucleotides in its constituent strands. Here we establish that single nucleotides can be designed to functionally imitate dinucleotides without compromising binding affinity. This effectively allows sequence information to be more compact and concentrated to fewer phosphates.
Collapse
Affiliation(s)
- Mick Hornum
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | | | | | | | | | | |
Collapse
|
8
|
Sharma PK, Kumar P, Nielsen P. Double-Headed Nucleotides: Building Blocks for New Nucleic Acid Architectures. Aust J Chem 2016. [DOI: 10.1071/ch16021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Double-headed nucleotides are nucleotides with two nucleobases. These have been investigated recently with the purpose of using the recognition potential of the additional nucleobases in various nucleic acid constructs. Presented here is a review of the double-headed nucleotide monomers investigated so far and their effects in nucleic acid duplexes and other secondary structures.
Collapse
|
9
|
Kumar P, Sharma PK, Hansen J, Jedinak L, Reslow-Jacobsen C, Hornum M, Nielsen P. Three new double-headed nucleotides with additional nucleobases connected to C-5 of pyrimidines; synthesis, duplex and triplex studies. Bioorg Med Chem 2015; 24:742-9. [PMID: 26778611 DOI: 10.1016/j.bmc.2015.12.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
In the search for double-coding DNA-systems, three new pyrimidine nucleosides, each coded with an additional nucleobase anchored to the major groove face, are synthesized. Two of these building blocks carry a thymine at the 5-position of 2'-deoxyuridine through a methylene linker and a triazolomethylene linker, respectively. The third building block carries an adenine at the 6-position of pyrrolo-2'-deoxycytidine through a methylene linker. These double-headed nucleosides are introduced into oligonucleotides and their effects on the thermal stabilities of duplexes are studied. All studied double-headed nucleotide monomers reduce the thermal stability of the modified duplexes, which is partially compensated by using consecutive incorporations of the modified monomers or by flanking the new double-headed analogs with members of our former series containing propyne linkers. Also their potential in triplex-forming oligonucleotides is studied for two of the new double-headed nucleotides as well as the series of analogs with propyne linkers. The most stable triplexes are obtained with single incorporations of additional pyrimidine nucleobases connected via the propyne linker.
Collapse
Affiliation(s)
- Pawan Kumar
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra 136 119, India
| | - Jonas Hansen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lukas Jedinak
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Charlotte Reslow-Jacobsen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Mick Hornum
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Poul Nielsen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
10
|
Dalager M, Andersen NK, Kumar P, Nielsen P, Sharma PK. Double-headed nucleotides introducing thymine nucleobases in the major groove of nucleic acid duplexes. Org Biomol Chem 2015; 13:7040-9. [PMID: 26053231 DOI: 10.1039/c5ob00872g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Four different double-headed nucleosides each combining two thymine nucleobases with different linkers were synthesised. The 5-position of 2'-deoxyuridine was connected to the N1-position of a thymine through either m- or p-disubstituted phenyl or phenylacetylene linkers by the use of Suzuki or Sonogashira couplings. When introduced into oligonucleotides, the thermal stability of dsDNA and DNA : RNA duplexes were determined and structural information was obtained from CD- and fluorescence spectroscopy. Also the recognition of abasic sites was studied. In general, the more stable duplexes were obtained with m- rather than p-substitution and with phenylacetylene rather than phenyl linkers.
Collapse
Affiliation(s)
- Michael Dalager
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|
11
|
Kumar P, Sharma PK, Nielsen P. Double-headed nucleotides with arabino configuration: synthesis and hybridization properties. J Org Chem 2014; 79:11534-40. [PMID: 25375974 DOI: 10.1021/jo502189h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The formation of new nucleic acid motifs by using double-headed nucleotides is reported. Modified phosphoramidites carrying additional thymine or adenine attached to the 2'-position of arabinouridine through a methylene linker are conveniently prepared and incorporated into oligonucleotides to obtain the modified nucleotide monomers (a)U(T) and (a)U(A), respectively. The extension of a DNA double helix by one or two additional A:T base pairs is achieved by placing these modified monomers in the opposite strands in a so-called (+1)-zipper arrangement. Hence, 12 basepairs can be presented in an 11-mer or even a 10-mer duplex. The modified nucleotide monomers also behave as dinucleotides when base-paired with two complementary nucleotides from the opposite strand. A new nucleic acid motif is introduced when two (a)U(A) monomers recognize each other in the center of a duplex.
Collapse
Affiliation(s)
- Pawan Kumar
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , 5230 Odense M, Denmark
| | | | | |
Collapse
|
12
|
Kumar P, Sorinas AF, Nielsen LJ, Slot M, Skytte K, Nielsen AS, Jensen MD, Sharma PK, Vester B, Petersen M, Nielsen P. Double-coding nucleic acids: introduction of a nucleobase sequence in the major groove of the DNA duplex using double-headed nucleotides. J Org Chem 2014; 79:8020-30. [PMID: 25089572 DOI: 10.1021/jo501151w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of double-headed nucleosides were synthesized using the Sonogashira cross-coupling reaction. In the reactions, additional nucleobases (thymine, cytosine, adenine, or guanine) were attached to the 5-position of 2'-deoxyuridine or 2'-deoxycytidine through a propyne linker. The modified nucleosides were incorporated into oligonucleotides, and these were combined in different duplexes that were analyzed by thermal denaturation studies. All of the monomers were well tolerated in the DNA duplexes and induced only small changes in the thermal stability. Consecutive incorporations of the monomers led to increases in duplex stability owing to increased stacking interactions. The modified nucleotide monomers maintained the Watson-Crick base pair fidelity. Stable duplexes were observed with heavily modified oligonucleotides featuring 14 consecutive incorporations of different double-headed nucleotide monomers. Thus, modified duplexes with an array of nucleobases on the exterior of the duplex were designed. Molecular dynamics simulations demonstrated that the additional nucleobases could expose their Watson-Crick and/or Hoogsteen faces for recognition in the major groove. This presentation of nucleobases may find applications in providing molecular information without unwinding the duplex.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Physics, Chemistry and Pharmacy and ‡Department of Biochemistry and Molecular Biology, Nucleic Acid Center, University of Southern Denmark , 5230 Odense M, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|