1
|
Clara da Silva Durigon M, Renata Caitano Visnheski B, Braz Júnior O, Christina Thomas J, Fogagnoli Simas F, Piovan L. Polyfunctionalized organoselenides: New synthetic approach from selenium-containing cyanohydrins and anti-melanoma activity. Bioorg Med Chem Lett 2024; 110:129860. [PMID: 38942128 DOI: 10.1016/j.bmcl.2024.129860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
A series of seleno-containing polyfunctionalized compounds was synthesized exploring cyanohydrin chemistry, including α-hydroxy esters, α-hydroxy acids, 1,2-diols, and 1,2-diacetates, with yields ranging from 26 up to 99 %. The cytotoxicity of all synthesized compounds was then evaluated using a non-tumor cell line (BALB/3T3 murine fibroblasts), and those deemed non-cytotoxic had their anti-melanoma activity evaluated using B16-F10 murine melanoma cells. These assays identified two compounds with selective cytotoxic activity against the tested melanoma cell line, showing a potential anti-melanoma application.
Collapse
|
2
|
Mo MY, Wang XJ, Shen RZ, Hu CY, Li XC, Li GW, Liu LT. Enantiospecific Analysis of Carboxylic Acids Using Cinchona Alkaloid Dimers as Chiral Solvating Agents. Anal Chem 2024; 96:7487-7496. [PMID: 38695134 DOI: 10.1021/acs.analchem.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Cinchona alkaloid derivatives as Brønsted base catalysts have attracted considerable attention in the field of asymmetric catalysis. However, their potential application as chiral solvating agents has not been described. In this research, we investigated the use of the Cinchona alkaloid dimer, namely, (DHQ)2PHAL, as a chiral solvating agent for discerning various mandelic acid derivatives through 1H NMR spectroscopy. The addition of catalytic amounts of DMAP facilitated this process. Our experimental results demonstrate that dimeric (DHQ)2PHAL exhibits remarkable chiral discrimination properties regarding the diagnostic split protons of 1H NMR signals (including 24 examples, up to 0.321 ppm). Furthermore, it serves as an excellent chiral discriminating agent and provides good resolution for racemic chiral phosphoric acid as determined by 31P NMR spectroscopy. The quality of enantiodifferentiation has also been evaluated by means of the parameter "resolution (Rs)". Significantly, this class of CSAs based on (alkaloid)2linker systems with an azaaromatic linker can be directly employed, which is commercially available in an enantiopure form at very low cost and exhibits promising potential in determining the enantiopurity of α-hydroxy acids by chemoselective and biocatalytic reactions.
Collapse
Affiliation(s)
- Ming-Yang Mo
- School of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Ren-Zeng Shen
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Chang-Yan Hu
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Xue-Chun Li
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Gao-Wei Li
- School of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Lan-Tao Liu
- School of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| |
Collapse
|
3
|
Slavchev IM, Mitrev Y, Shivachev B, Valcheva V, Dogonadze M, Solovieva N, Vyazovaya A, Mokrousov I, Link W, Jiménez L, Cautain B, Mackenzie TA, Portugal I, Lopes F, Capela R, Perdigão J, Dobrikov GM. Synthesis, Characterization and Complex Evaluation of Antibacterial Activity and Cytotoxicity of New Arylmethylidene Ketones and Pyrimidines with Camphane Skeletons. ChemistrySelect 2022. [DOI: 10.1002/slct.202201339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivaylo M. Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences bl. 9, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Yavor Mitrev
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences bl. 9, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Boris Shivachev
- Institute of Mineralogy and Crystallography Bulgarian Academy of Sciences, bl. 107, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Violeta Valcheva
- Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences bl. 26, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Marine Dogonadze
- St. Petersburg Research Institute of Phthisiopulmonology St. Petersburg Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology St. Petersburg Russia
- Laboratory of Molecular Epidemiology and Evolutionary Genetics St. Petersburg Pasteur Institute St. Petersburg Russia
| | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics St. Petersburg Pasteur Institute St. Petersburg Russia
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics St. Petersburg Pasteur Institute St. Petersburg Russia
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4 28029 Madrid Spain
| | - Lucía Jiménez
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4 28029 Madrid Spain
| | - Bastien Cautain
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía Parque Tecnológico de Ciencias de la Salud Avda. del Conocimiento 34 18016 Granada Spain
| | - Thomas A. Mackenzie
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía Parque Tecnológico de Ciencias de la Salud Avda. del Conocimiento 34 18016 Granada Spain
| | - Isabel Portugal
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Francisca Lopes
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Rita Capela
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - João Perdigão
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Georgi M. Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences bl. 9, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| |
Collapse
|
4
|
Artyushin OI, Moiseeva AA, Zarubaev VV, Slita AV, Galochkina AV, Muryleva AA, Borisevich SS, Yarovaya OI, Salakhutdinov NF, Brel VK. Synthesis of Camphecene and Cytisine Conjugates Using Click Chemistry Methodology and Study of Their Antiviral Activity. Chem Biodivers 2019; 16:e1900340. [PMID: 31647170 DOI: 10.1002/cbdv.201900340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
A series of camphecene and quinolizidine alkaloid (-)-cytisine conjugates has been obtained for the first time using 'click' chemistry methodology. The cytotoxicity and virus-inhibiting activity of compounds were determined against MDCK cells and influenza virus A/Puerto Rico/8/34 (H1N1), correspondingly, in in vitro tests. Based on the results obtained, values of 50 % cytotoxic dose (CC50 ), 50 % inhibition dose (IC50 ) and selectivity index (SI) were determined for each compound. It has been shown that the antiviral activity is affected by the length and nature of linkers between cytisine and camphor units. Conjugate 13 ((1R,5S)-3-(6-{4-[(2-{(E)-[(1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene]amino}ethoxy)methyl]-1H-1,2,3-triazol-1-yl}hexyl)-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one), which contains cytisine fragment separated from triazole ring by -C6 H12 - aliphatic linker, showed the highest activity at relatively low toxicity (CC50 =168 μmol, IC50 =8 μmol, SI=20). Its selectivity index appeared higher than that of reference compound, rimantadine. According to theoretical calculations, the antiviral activity of the lead compound 13 can be explained by its influence on the functioning of neuraminidase.
Collapse
Affiliation(s)
- Oleg I Artyushin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Str., Moscow, 119991, Russia
| | - Aleksandra A Moiseeva
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Str., Moscow, 119991, Russia
| | - Vladimir V Zarubaev
- Paster Research Institute of Epidemiology and Microbiology, 14 Mira Str., St. Petersburg, 197101, Russia
| | - Aleksander V Slita
- Paster Research Institute of Epidemiology and Microbiology, 14 Mira Str., St. Petersburg, 197101, Russia
| | - Anastasiya V Galochkina
- Paster Research Institute of Epidemiology and Microbiology, 14 Mira Str., St. Petersburg, 197101, Russia
| | - Anna A Muryleva
- Paster Research Institute of Epidemiology and Microbiology, 14 Mira Str., St. Petersburg, 197101, Russia
| | | | - Olga I Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9 Lavrent'ev ave., Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
| | - Nariman F Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9 Lavrent'ev ave., Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
| | - Valery K Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Str., Moscow, 119991, Russia
| |
Collapse
|
5
|
Souza MRP, Coelho NP, Baldin VP, Scodro RBL, Cardoso RF, da Silva CC, Vandresen F. Synthesis of novel (-)-Camphene-based thiosemicarbazones and evaluation of anti-Mycobacterium tuberculosis activity. Nat Prod Res 2018; 33:3372-3377. [DOI: 10.1080/14786419.2018.1478829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Mariana R. P. Souza
- Departamento de Química, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | - Narcimário P. Coelho
- Departamento de Química, Instituto Federal Mato Grosso do Sul-Campus de Nova Andradina, Fazenda Santa Bárbara, Nova Andradina, Brazil
| | - Vanessa P. Baldin
- Pós Graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Regiane B. L. Scodro
- Pós Graduação em Ciência de Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - Rosilene F. Cardoso
- Pós Graduação em Ciência de Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - Cleuza C. da Silva
- Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | - Fábio Vandresen
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Londrina, Brazil
| |
Collapse
|
6
|
Philipova I, Valcheva V, Mihaylova R, Mateeva M, Doytchinova I, Stavrakov G. Synthetic piperine amide analogs with antimycobacterial activity. Chem Biol Drug Des 2017; 91:763-768. [PMID: 29130602 DOI: 10.1111/cbdd.13140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/17/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
Piperine amide analogs are synthesized by replacement of the piperidine moiety with different types of cyclic amines, including adamantyl and monoterpene-derived fragments. The compounds are screened for activity against Mycobacterium tuberculosis H37Rv. The most potent compounds are the 1-adamantyl and the monoterpene-derived hybrids, which combine nanomolar antimycobacterial activity with low cytotoxicity against human cells. The presence of quaternary carbon atom as main structural requirement for anti-TB activity is pointed out by a QSAR study. The most promising compound is the (+)-isopinocampheylamine-derived amide which is characterized with selectivity index of 1387.8.
Collapse
Affiliation(s)
- Irena Philipova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Violeta Valcheva
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Mina Mateeva
- Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | | | - Georgi Stavrakov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria.,Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
7
|
Guo H, Li J, Liu D, Zhang W. The Synthesis of Chiral α-Aryl α-Hydroxy Carboxylic Acids via RuPHOX-Ru Catalyzed Asymmetric Hydrogenation. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huan Guo
- School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Jing Li
- School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Delong Liu
- School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Wanbin Zhang
- School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| |
Collapse
|
8
|
Salakhutdinov NF, Volcho KP, Yarovaya OI. Monoterpenes as a renewable source of biologically active compounds. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0109] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractMonoterpenes and their derivatives play an important role in the creation of new biologically active compounds including drugs. The review focuses on the data on various types of biological activity exhibited by monoterpenes and their derivatives, including analgesic, anti-inflammatory, anticonvulsant, antidepressant, anti-Alzheimer, anti-Parkinsonian, antiviral, and antibacterial (anti-tuberculosis) effects. Searching for novel potential drugs among monoterpene derivatives shows great promise for treating various pathologies. Special attention is paid to the effect of absolute configuration of monoterpenes and monoterpenoids on their activity.
Collapse
Affiliation(s)
- Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Olga I. Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Sokolova AS, Yarovaya ОI, Baev DS, Shernyukov АV, Shtro AA, Zarubaev VV, Salakhutdinov NF. Aliphatic and alicyclic camphor imines as effective inhibitors of influenza virus H1N1. Eur J Med Chem 2016; 127:661-670. [PMID: 27823881 DOI: 10.1016/j.ejmech.2016.10.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 12/28/2022]
Abstract
A series of camphor derived imines was synthesised and evaluated in vitro for antiviral activity. Theoretical evaluations of ADME properties were also carried out. Most of these compounds exhibited significant activity against the drug-resistant strains of influenza A virus. Especially, compounds 2 (SI = 632) and 3 (SI = 417) presented high inhibition against influenza subtypes A/Puerto Rico/8/34 and A/California/07/09 of H1N1pdm09. Analysis of the structure-activity relationship showed that the activity was strongly dependent on the length of the aliphatic chain: derivatives with a shorter chain possessed higher activity, while the suppressing action of compounds with long aliphatic chains was lower.
Collapse
Affiliation(s)
- Anastasiya S Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| | - Оlga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia.
| | - Dmitry S Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Аndrey V Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Anna A Shtro
- Department of Chemotherapy, Influenza Research Institute, 15/17 Prof. Popova St., 197376 St. Petersburg, Russia
| | - Vladimir V Zarubaev
- Department of Chemotherapy, Influenza Research Institute, 15/17 Prof. Popova St., 197376 St. Petersburg, Russia.
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Shokova EA, Kim JK, Kovalev VV. Camphor and its derivatives. Unusual transformations and biological activity. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1070428016040011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Grošelj U, Golobič A, Knez D, Hrast M, Gobec S, Ričko S, Svete J. Synthesis and preliminary biological evaluations of (+)-isocampholenic acid-derived amides. Mol Divers 2016; 20:667-76. [PMID: 27017352 DOI: 10.1007/s11030-016-9668-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
Abstract
The synthesis of two novel (+)-isocampholenic acid-derived amines has been realized starting from commercially available (1S)-(+)-10-camphorsulfonic acid. The novel amines as well as (+)-isocampholenic acid have been used as building blocks in the construction of a library of amides using various aliphatic, aromatic, and amino acid-derived coupling partners using BPC and CDI as activating agents. Amide derivatives have been assayed against several enzymes that hold potential for the development of new drugs to battle bacterial infections and Alzheimer's disease. Compounds 20c and 20e showed promising selective sub-micromolar inhibition of human butyrylcholinesterase [Formula: see text] ([Formula: see text] values [Formula: see text] and [Formula: see text], respectively).
Collapse
Affiliation(s)
- Uroš Grošelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| | - Amalija Golobič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Sebastijan Ričko
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| |
Collapse
|
12
|
Sokolova AS, Yarovaya OI, Shernyukov AV, Gatilov YV, Razumova YV, Zarubaev VV, Tretiak TS, Pokrovsky AG, Kiselev OI, Salakhutdinov NF. Discovery of a new class of antiviral compounds: Camphor imine derivatives. Eur J Med Chem 2015; 105:263-73. [DOI: 10.1016/j.ejmech.2015.10.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 12/17/2022]
|
13
|
Stepanovs D, Posevins D, Turks M. Crystal structures of two (±)-exo-N-isobornyl-acetamides. ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS 2015; 71:1117-20. [PMID: 26594386 PMCID: PMC4647407 DOI: 10.1107/s2056989015015984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/26/2015] [Indexed: 11/12/2022]
Abstract
The title compounds consist of a 1,7,7-trimethylbicyclo[2.2.1]heptane (bornane or camphane) skeleton which is decorated with acetamide for (±)-(1) and chloroacetamide for (±)-(2), functionalities. In the crystals of both compounds, molecules are linked via N—H⋯O hydrogen bonds, reinforced by C—H⋯O contacts, forming chains propagating along the a axis. The title compounds consist of a bornane skeleton with attached acetamide, C12H21NO (±)-(1) {systematic name: (±)-N-[(1RS,2RS,4RS)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl]acetamide}, and chloroacetamide, C12H20ClNO (±)-(2) {systematic name: (±)-2-chloro-N-[(1RS,2RS,4RS)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl]acetamide}, functionalities to the 2-exo-position. The crystal structure of the first monoclinic polymorph of (±)-(1) has been reported previously [Ung et al. (2014 ▸). Monatsh. Chem.145, 983–992]. Compound (±)-(1) crystallizes in the space group P21/n with two independent molecules in the asymmetric unit, in contrast to the above-mentioned polymorph which crystallized in the space group C2/c with one molecule in the asymmetric unit. In the title compounds, the bicyclic bornane moieties have normal geometries. In the crystals of both compounds, molecules are linked by N—H⋯O hydrogen bonds, reinforced by C—H⋯O contacts, forming trans-amide chains propagating along the a-axis direction. In the case of compound (±)-(1), neighbouring chains are linked by further C—H⋯O contacts, forming double-chain ribbons along [100].
Collapse
Affiliation(s)
- Dmitrijs Stepanovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia ; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, Riga, LV-1048, Latvia
| | - Daniels Posevins
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, Riga, LV-1048, Latvia
| | - Maris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, Riga, LV-1048, Latvia
| |
Collapse
|
14
|
Sokolova AS, Morozova EA, Vasilev VG, Yarovaya OI, Tolstikova TG, Salakhutdinov NF. Curare-like camphor derivatives and their biological activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:203-11. [DOI: 10.1134/s1068162015020156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Ganihigama DU, Sureram S, Sangher S, Hongmanee P, Aree T, Mahidol C, Ruchirawat S, Kittakoop P. Antimycobacterial activity of natural products and synthetic agents: Pyrrolodiquinolines and vermelhotin as anti-tubercular leads against clinical multidrug resistant isolates of Mycobacterium tuberculosis. Eur J Med Chem 2015; 89:1-12. [DOI: 10.1016/j.ejmech.2014.10.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/28/2022]
|
16
|
Gu X, Wang L, Gao YF, Ma W, Li YM, Gong P. The synthesis of enantioenriched α-hydroxy esters. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.tetasy.2014.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Synthesis and antimycobacterial evaluation of natural oridonin and its enmein-type derivatives. Fitoterapia 2014; 99:300-6. [DOI: 10.1016/j.fitote.2014.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 11/22/2022]
|
18
|
Slavchev I, Dobrikov GM, Valcheva V, Ugrinova I, Pasheva E, Dimitrov V. Antimycobacterial activity generated by the amide coupling of (-)-fenchone derived aminoalcohol with cinnamic acids and analogues. Bioorg Med Chem Lett 2014; 24:5030-3. [PMID: 25248685 DOI: 10.1016/j.bmcl.2014.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 11/24/2022]
Abstract
Aminoethyl substituted 2-endo-fenchol prepared from (-)-fenchone was used as scaffold for the synthesis of series of 31 amide structures by N-acylation applying cinnamic acids and analogues. The evaluation of their in vitro activity against Mycobacterium tuberculosis H37Rv showed for some of them promising activity-up to 0.2 μg/ml, combined with relatively low cytotoxicity of the selected active compounds.
Collapse
Affiliation(s)
- Ivaylo Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9, Acad. G. Bonchev str., Sofia 1113, Bulgaria
| | - Georgi M Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9, Acad. G. Bonchev str., Sofia 1113, Bulgaria.
| | - Violeta Valcheva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, bl. 26, Acad. G. Bonchev str., Sofia 1113, Bulgaria
| | - Iva Ugrinova
- Institute of Molecular Biology 'Roumen Tsanev', Bulgarian Academy of Sciences, bl. 21, Acad. G. Bonchev str., Sofia 1113, Bulgaria
| | - Evdokia Pasheva
- Institute of Molecular Biology 'Roumen Tsanev', Bulgarian Academy of Sciences, bl. 21, Acad. G. Bonchev str., Sofia 1113, Bulgaria
| | - Vladimir Dimitrov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9, Acad. G. Bonchev str., Sofia 1113, Bulgaria
| |
Collapse
|
19
|
Xu S, Li D, Pei L, Yao H, Wang C, Cai H, Yao H, Wu X, Xu J. Design, synthesis and antimycobacterial activity evaluation of natural oridonin derivatives. Bioorg Med Chem Lett 2014; 24:2811-4. [DOI: 10.1016/j.bmcl.2014.04.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/20/2014] [Accepted: 04/29/2014] [Indexed: 11/28/2022]
|
20
|
Petkova Z, Valcheva V, Momekov G, Petrov P, Dimitrov V, Doytchinova I, Stavrakov G, Stoyanova M. Antimycobacterial activity of chiral aminoalcohols with camphane scaffold. Eur J Med Chem 2014; 81:150-7. [DOI: 10.1016/j.ejmech.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/12/2014] [Accepted: 05/01/2014] [Indexed: 11/26/2022]
|
21
|
Stavrakov G, Valcheva V, Philipova I, Doytchinova I. Design of novel camphane-based derivatives with antimycobacterial activity. J Mol Graph Model 2014; 51:7-12. [PMID: 24859319 DOI: 10.1016/j.jmgm.2014.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 04/02/2014] [Accepted: 04/21/2014] [Indexed: 01/19/2023]
Abstract
Although tuberculosis (TB) continues to be one of the leading infectious disease killers globally, it is curable and preventable. Despite the existence of safe, well tolerated and effective drugs used in the TB treatment, the interest in new entities, combinations and regimens increases during the last 10 years. Recently, we reported for a new class of anti-TB agents - camphane-based derivatives with nanomolar activity against Mycobacterium tuberculosis strains. The quantitative structure-activity relationship (QSAR) study on 12 compounds revealed several structural requirements for antimycobacterial activity: two hydrogen bond donors, two or three rings and no large branched substituents. Here, we describe the design of a set of nine novel camphane-based derivatives following these requirements. The compounds were synthesized and tested against M. tuberculosis strain H37Rv. Four of them showed activities in the nanomolar range, significantly higher than the activities in the initial set. The QSAR study based on all 21 derivatives pointed to two main structural requirements for anti-TB activity: two hydrogen bond donors and a side chain with aromatic ring.
Collapse
Affiliation(s)
- Georgi Stavrakov
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav st., Sofia 1000, Bulgaria
| | - Violeta Valcheva
- Institute of Microbiology, Bulgarian Academy of Sciences, 26 Akad. Bonchev st., Sofia 1113, Bulgaria
| | - Irena Philipova
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, 9 Acad. Bonchev st., Sofia 1113, Bulgaria
| | - Irini Doytchinova
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav st., Sofia 1000, Bulgaria.
| |
Collapse
|