1
|
Xia W, Jiang L, Gong Z, Ji S, Chai Z, Liu M, Li C, Liu Y. Visualizing Dynamic Weak Interaction Networks of Fluorine Atoms within Proteins via NMR. Anal Chem 2024; 96:19651-19658. [PMID: 39602336 DOI: 10.1021/acs.analchem.4c04773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The utilization of fluorine probes in protein research has advanced our understanding of the nature of macromolecules. The diverse activities of proteins are governed by intricate weak interaction networks, yet the experimental detection presents a challenge. Herein, we have developed an NMR analytical method based on quantum coherent operations to characterize the weak chemical bonds of fluorine atoms within proteins that are bound to metal fluorides or labeled with fluorinated amino acids. Our approach offers a fast-screening method for identifying a weak interaction network without requiring crystallization.
Collapse
Affiliation(s)
- Wenqing Xia
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhou Gong
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shixia Ji
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaofei Chai
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yixiang Liu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
2
|
Silva RC, De Freitas A, Vicente B, Midlej V, Dos Santos MS. Exploring novel pyrazole-nitroimidazole hybrids: Synthesis and antiprotozoal activity against the human pathogen trichomonas vaginalis. Bioorg Med Chem 2024; 102:117679. [PMID: 38461555 DOI: 10.1016/j.bmc.2024.117679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Trichomoniasis, a prevalent sexually transmitted infection (STI) caused by the protozoan Trichomonas vaginalis, has gained increased significance globally. Its relevance has grown in recent years due to its association with a heightened risk of acquiring and transmitting the human immunodeficiency virus (HIV) and other STIs. In addition, many publications have revealed a potential link between trichomoniasis and certain cancers. Metronidazole (MTZ), a nitroimidazole compound developed over 50 years ago, remains the first-choice drug for treatment. However, reports of genotoxicity and side effects underscore the necessity for new compounds to address this pressing global health concern. In this study, we synthesized ten pyrazole-nitroimidazoles 1(a-j) and 4-nitro-1-(hydroxyethyl)-1H-imidazole 2, an analog of metronidazole (MTZ), and assessed their trichomonacidal and cytotoxic effects. All compounds 1(a-j) and 2 exhibited IC50 values ≤ 20 μM and ≤ 41 μM, after 24 h and 48 h, respectively. Compounds 1d (IC50 5.3 μM), 1e (IC50 4.8 μM), and 1i (IC50 5.2 μM) exhibited potencies equivalent to MTZ (IC50 4.9 μM), the reference drug, after 24 h. Notably, compound 1i showed high anti-trichomonas activity after 24 h (IC50 5.2 μM) and 48 h (IC50 2.1 μM). Additionally, all compounds demonstrated either non-cytotoxic to HeLa cells (CC50 > 100 μM) or low cytotoxicity (CC50 between 69 and 100 μM). These findings suggest that pyrazole-nitroimidazole derivatives represent a promising heterocyclic system, serving as a potential lead for further optimization in trichomoniasis chemotherapy.
Collapse
Affiliation(s)
- Rafaela Corrêa Silva
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Institute of Physics and Chemistry, Federal University of Itajubá, 1303 BPS Avenue, Pinheirinho, Itajubá-MG, 37500-903, Brazil
| | - Anna De Freitas
- Laboratório de Biologia Estrutural (LBE), Oswaldo Cruz Institute, Fiocruz, 4365 Brasil Avenue, Manguinhos, Rio de Janeiro-RJ, 21040-900, Brazil; Programa de Pós-graduação em Biologia Parasitária, Oswaldo Cruz Institute- Fiocruz, Brazil
| | - Bruno Vicente
- Laboratório de Biologia Estrutural (LBE), Oswaldo Cruz Institute, Fiocruz, 4365 Brasil Avenue, Manguinhos, Rio de Janeiro-RJ, 21040-900, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Oswaldo Cruz Institute-Fiocruz, Brazil
| | - Victor Midlej
- Laboratório de Biologia Estrutural (LBE), Oswaldo Cruz Institute, Fiocruz, 4365 Brasil Avenue, Manguinhos, Rio de Janeiro-RJ, 21040-900, Brazil
| | - Maurício Silva Dos Santos
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Institute of Physics and Chemistry, Federal University of Itajubá, 1303 BPS Avenue, Pinheirinho, Itajubá-MG, 37500-903, Brazil.
| |
Collapse
|
3
|
Beshay EVN, Nassef NE, El Shafei OK, Saleh MM, Kora MA, Shalaan FH. Therapeutic efficacy of proton pump inhibitor (omeprazole) on cryptosporidiosis parvum in immunosuppressed experimental mice. J Parasit Dis 2023; 47:535-549. [PMID: 37520212 PMCID: PMC10382457 DOI: 10.1007/s12639-023-01592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/04/2023] [Indexed: 08/01/2023] Open
Abstract
Cryptosporidiosis is one of the most frequent food and water-borne diseases. The disease might be life-threatening in immunosuppressed patients. Unfortunately, the only approved drug, nitazoxanide, is with variable efficacies, particularly in malnourished children and immunocompromised patients. Therefore, there is a need to discover an alternative treatment that could be achieved by targeting the metabolic pathways. One of the important enzymes in the glycolysis pathway of C. parvum is triosephosphate isomerase, which could be hindered by the proton pump inhibitor (PPI) omeprazole. In this study, omeprazole was repurposed against C. parvum infection in experimentally immunosuppressed mice. This study was conducted on five mice groups (n = 10). Group I (Normal Control), group II (Infected Control): Mice were infected orally with 1 × 105 C. parvum oocysts on the 15th day of DEX induced immunosuppression. Group III (NTZ-treated): infected and treated by NTZ. Group IV (Omeprazole-treated), and lastly, Group V (NTZ + Omeprazole-treated). The result obtained with omeprazole alone was better than nitazoxanide regarding oocyst shedding reduction percentages (84.9% & 56.1%, respectively). Also, it was better regarding restoration of histopathological and ultrastructural architectures, improvement of liver enzymes (alanine aminotransferase and aspartate aminotransferase) and renal functions (urea and creatinine), and the reduction of C. parvum triosephosphate isomerase (TIM) gene expression by RT-PCR. However, the best results were obtained with the combined treatment. Hence, omeprazole could be considered a novel drug option to treat this life-threatening parasitic infection either alone or combined with NTZ, especially in immunosuppressed patients.
Collapse
Affiliation(s)
- Engy V N Beshay
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Nashaat E Nassef
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Omaima K El Shafei
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Mona M Saleh
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Mona A Kora
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia Egypt
| | - Fatma H Shalaan
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| |
Collapse
|
4
|
Patrone M, Galasyn GS, Kerin F, Nyitray MM, Parkin DW, Stockman BJ, Degano M. A riboside hydrolase that salvages both nucleobases and nicotinamide in the auxotrophic parasite Trichomonas vaginalis. J Biol Chem 2023; 299:105077. [PMID: 37482279 PMCID: PMC10474468 DOI: 10.1016/j.jbc.2023.105077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023] Open
Abstract
Pathogenic parasites of the Trichomonas genus are causative agents of sexually transmitted diseases affecting millions of individuals worldwide and whose outcome may include stillbirths and enhanced cancer risks and susceptibility to HIV infection. Trichomonas vaginalis relies on imported purine and pyrimidine nucleosides and nucleobases for survival, since it lacks the enzymatic activities necessary for de novo biosynthesis. Here we show that T. vaginalis additionally lacks homologues of the bacterial or mammalian enzymes required for the synthesis of the nicotinamide ring, a crucial component in the redox cofactors NAD+ and NADP. Moreover, we show that a yet fully uncharacterized T. vaginalis protein homologous to bacterial and protozoan nucleoside hydrolases is active as a pyrimidine nucleosidase but shows the highest specificity toward the NAD+ metabolite nicotinamide riboside. Crystal structures of the trichomonal riboside hydrolase in different states reveals novel intermediates along the nucleoside hydrolase-catalyzed hydrolytic reaction, including an unexpected asymmetry in the homotetrameric assembly. The active site structure explains the broad specificity toward different ribosides and offers precise insights for the engineering of specific inhibitors that may simultaneously target different essential pathways in the parasite.
Collapse
Affiliation(s)
- Marco Patrone
- Biocrystallography Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy; Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy
| | - Gregory S Galasyn
- Department of Chemistry, Adelphi University, Garden City, New York, USA
| | - Fiona Kerin
- Department of Chemistry, Adelphi University, Garden City, New York, USA
| | - Mattias M Nyitray
- Department of Chemistry, Adelphi University, Garden City, New York, USA
| | - David W Parkin
- Department of Chemistry, Adelphi University, Garden City, New York, USA
| | - Brian J Stockman
- Department of Chemistry, Adelphi University, Garden City, New York, USA.
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy; Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
5
|
Stockman BJ, Ventura CA, Deykina VS, Khayan Lontscharitsch N, Saljanin E, Gil A, Canestrari M, Mahmood M. Direct Measurement of Nucleoside Ribohydrolase Enzyme Activities in Trichomonas vaginalis Cells Using 19F and 13C-Edited 1H NMR Spectroscopy. Anal Chem 2023; 95:5300-5306. [PMID: 36917470 PMCID: PMC10825731 DOI: 10.1021/acs.analchem.2c05330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Trichomoniasis is the most common nonviral sexually transmitted infection, affecting an estimated 275 million people worldwide. The causative agent is the parasitic protozoan Trichomonas vaginalis. Although the disease itself is typically mild, individuals with trichomonal infections have a higher susceptibility to more serious conditions. The emergence of parasite strains resistant to current therapies necessitates the need for novel treatment strategies. Since T. vaginalis is an obligate parasite that requires nucleoside salvage pathways, essential nucleoside ribohydrolase enzymes are promising new drug targets. Fragment screening and X-ray crystallography have enabled structure-guided design of inhibitors for two of these enyzmes. Linkage of enzymatic and antiprotozoal activity would be a transformative step toward designing novel, mechanism-based therapeutic agents. While a correlation with inhibition of purified enzyme would be mechanistically suggestive, a correlation with inhibition of in-cell enzyme activity would definitively establish this linkage. To demonstrate this linkage, we have translated our NMR-based activity assays that measure the activity of purified enzymes for use in T. vaginalis cells. The 19F NMR-based activity assay for the pyrimidine-specific enzyme translated directly to in-cell assays. However, the 1H NMR-based activity assay for the purine-specific enzyme required a switch from adenosine to guanosine substrate and the use of 13C-editing to resolve the substrate 1H signals from cell and growth media background signals. The in-cell NMR assays are robust and have been demonstrated to provide inhibition data on test compounds. The results described here represent the first direct measurement of enzyme activity in protozoan parasite cells.
Collapse
Affiliation(s)
- Brian J Stockman
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Carlos A Ventura
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Valerie S Deykina
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | | | - Edina Saljanin
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Ari Gil
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Madison Canestrari
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Maham Mahmood
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| |
Collapse
|
6
|
Muellers SN, Nyitray MM, Reynarowych N, Saljanin E, Benzie AL, Schoenfeld AR, Stockman BJ, Allen KN. Structure-Guided Insight into the Specificity and Mechanism of a Parasitic Nucleoside Hydrolase. Biochemistry 2022; 61:1853-1861. [PMID: 35994320 PMCID: PMC10845162 DOI: 10.1021/acs.biochem.2c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis is the causative parasitic protozoan of the disease trichomoniasis, the most prevalent, nonviral sexually transmitted disease in the world. T. vaginalis is a parasite that scavenges nucleosides from the host organism via catalysis by nucleoside hydrolase (NH) enzymes to yield purine and pyrimidine bases. One of the four NH enzymes identified within the genome of T. vaginalis displays unique specificity toward purine nucleosides, adenosine and guanosine, but not inosine, and atypically shares greater sequence similarity to the pyrimidine hydrolases. Bioinformatic analysis of this enzyme, adenosine/guanosine-preferring nucleoside ribohydrolase (AGNH), was incapable of identifying the residues responsible for this uncommon specificity, highlighting the need for structural information. Here, we report the X-ray crystal structures of holo, unliganded AGNH and three additional structures of the enzyme bound to fragment and small-molecule inhibitors. Taken together, these structures facilitated the identification of residue Asp231, which engages in substrate interactions in the absence of those residues that typically support the canonical purine-specific tryptophan-stacking specificity motif. An altered substrate-binding pose is mirrored by repositioning within the protein scaffold of the His80 general acid/base catalyst. The newly defined structure-determined sequence markers allowed the assignment of additional NH orthologs, which are proposed to exhibit the same specificity for adenosine and guanosine alone and further delineate specificity classes for these enzymes.
Collapse
Affiliation(s)
- Samantha N Muellers
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Mattias M Nyitray
- Department of Chemistry, Adelphi University, Garden City, New York 11530, United States
| | - Nicholas Reynarowych
- Department of Chemistry, Adelphi University, Garden City, New York 11530, United States
| | - Edina Saljanin
- Department of Chemistry, Adelphi University, Garden City, New York 11530, United States
| | - Annie Laurie Benzie
- Department of Biology, Adelphi University, Garden City, New York 11530, United States
| | - Alan R Schoenfeld
- Department of Biology, Adelphi University, Garden City, New York 11530, United States
| | - Brian J Stockman
- Department of Chemistry, Adelphi University, Garden City, New York 11530, United States
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
7
|
Buchholz CR, Pomerantz WCK. 19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery. RSC Chem Biol 2021; 2:1312-1330. [PMID: 34704040 PMCID: PMC8496043 DOI: 10.1039/d1cb00085c] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
19F NMR has emerged as a powerful tool in drug discovery, particularly in fragment-based screens. The favorable magnetic resonance properties of the fluorine-19 nucleus, the general absence of fluorine in biological settings, and its ready incorporation into both small molecules and biopolymers, has enabled multiple applications of 19F NMR using labeled small molecules and proteins in biophysical, biochemical, and cellular experiments. This review will cover developments in ligand-observed and protein-observed 19F NMR experiments tailored towards drug discovery with a focus on fragment screening. We also cover the key advances that have furthered the field in recent years, including quantitative, structural, and in-cell methodologies. Several case studies are described for each application to highlight areas for innovation and to further catalyze new NMR developments for using this versatile nucleus.
Collapse
Affiliation(s)
- Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
| | - William C K Pomerantz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis Minnesota 55455 USA
| |
Collapse
|
8
|
Choudhary S, Arora M, Verma H, Kumar M, Silakari O. Benzimidazole based hybrids against complex diseases: A catalogue of the SAR profile. Eur J Pharmacol 2021; 899:174027. [PMID: 33731294 DOI: 10.1016/j.ejphar.2021.174027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
The fused heterocyclic ring system has been recognized as a privileged structure that is used as a template in medicinal chemistry for drug discovery. Benzimidazole is one of the common scaffolds found in several natural products such as histidine, purines, and an integral part of vitamin B12. This hetero-aromatic bicyclic ring system acts as a pharmacophore in various drugs of therapeutic interest and has a broad spectrum of activity. Literature reports suggest that diversely substituted benzimidazoles possess distinct pharmacological profiles with multi-targeting potential, thereby, an indispensable anchor for the development of novel therapeutic agents against complex diseases such as cancer, malaria, inflammatory disorders, microbial diseases, hypertension, etc. Thus, lots of efforts have been diverted towards exploring the therapeutic potential of benzimidazoles. Despite great efforts made by the research community, still, some multi-factorial diseases continue to progress due to their complex pathophysiology. Under these sets of circumstances, there is a need to explore this nucleus for hybrid designing with multi-targeting potential against complex diseases. Benzimidazole-based hybrids have been reported to treat multifactorial diseases, making it a scaffold of interest for various pharmaceutical companies and research groups. In this write-up, we shed light on the recent pharmacological profiles, various designing strategies, and structure-activity relationships (SAR) of different benzimidazole-based hybrids.
Collapse
Affiliation(s)
- Shalki Choudhary
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Mohit Arora
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Manoj Kumar
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
9
|
Dalvit C, Veronesi M, Vulpetti A. Fluorine NMR functional screening: from purified enzymes to human intact living cells. JOURNAL OF BIOMOLECULAR NMR 2020; 74:613-631. [PMID: 32347447 DOI: 10.1007/s10858-020-00311-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The substrate- or cofactor-based fluorine NMR screening, also known as n-FABS (n fluorine atoms for biochemical screening), represents a powerful method for performing a direct functional assay in the search of inhibitors or enhancers of an enzymatic reaction. Although it suffers from the intrinsic low sensitivity compared to other biophysical techniques usually applied in functional assays, it has some distinctive features that makes it appealing for tackling complex chemical and biological systems. Its strengths are represented by the easy set-up, robustness, flexibility, lack of signal interference and rich information content resulting in the identification of bona fide inhibitors and reliable determination of their inhibitory strength. The versatility of the n-FABS allows its application to either purified enzymes, cell lysates or intact living cells. The principles, along with theoretical, technical and practical aspects, of the methodology are discussed. Furthermore, several applications of the technique to pharmaceutical projects are presented.
Collapse
Affiliation(s)
| | - Marina Veronesi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002, Basel, Switzerland
| |
Collapse
|
10
|
Auletta S, Caravan W, Persaud JK, Thuilot SF, Brown DG, Parkin DW, Stockman BJ. Discovery of Ligand-Efficient Scaffolds for the Design of Novel Trichomonas vaginalis Uridine Nucleoside Ribohydrolase Inhibitors Using Fragment Screening. ACS OMEGA 2019; 4:16226-16232. [PMID: 31592163 PMCID: PMC6777076 DOI: 10.1021/acsomega.9b02472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Trichomoniasis is caused by the parasitic protozoan Trichomonas vaginalis. The increasing prevalence of strains resistant to the current 5-nitroimidazole treatments creates the need for novel therapies. T. vaginalis cannot synthesize purine and pyrimidine rings and requires salvage pathway enzymes to obtain them from host nucleosides. The uridine nucleoside ribohydrolase was screened using an 19F NMR-based activity assay against a 2000-compound fragment diversity library. Several series of inhibitors were identified including scaffolds based on acetamides, cyclic ureas or ureas, pyridines, and pyrrolidines. A number of potent singleton compounds were identified, as well. Eighteen compounds with IC50 values of 20 μM or lower were identified, including some with ligand efficiency values of 0.5 or greater. Detergent and jump-dilution counter screens validated all scaffold classes as target-specific, reversible inhibitors. Identified scaffolds differ substantially from 5-nitroimidazoles. Medicinal chemistry using the structure-activity relationship emerging from the fragment hits is being pursued to discover nanomolar inhibitors.
Collapse
Affiliation(s)
- Shannon Auletta
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Wagma Caravan
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Julia K. Persaud
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Samantha F. Thuilot
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Dean G. Brown
- Hit
Discovery, Discovery Sciences, IMED Biotech
Unit, AstraZeneca, 35
Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David W. Parkin
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| | - Brian J. Stockman
- Department
of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, Unites States
| |
Collapse
|
11
|
Stockman BJ, Kaur A, Persaud JK, Mahmood M, Thuilot SF, Emilcar MB, Canestrari M, Gonzalez JA, Auletta S, Sapojnikov V, Caravan W, Muellers SN. NMR-Based Activity Assays for Determining Compound Inhibition, IC50 Values, Artifactual Activity, and Whole-Cell Activity of Nucleoside Ribohydrolases. J Vis Exp 2019. [PMID: 31305530 DOI: 10.3791/59928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NMR spectroscopy is often used for the identification and characterization of enzyme inhibitors in drug discovery, particularly in the context of fragment screening. NMR-based activity assays are ideally suited to work at the higher concentrations of test compounds required to detect these weaker inhibitors. The dynamic range and chemical shift dispersion in an NMR experiment can easily resolve resonances from substrate, product, and test compounds. This contrasts with spectrophotometric assays, in which read-out interference problems often arise from compounds with overlapping UV-vis absorption profiles. In addition, since they lack reporter enzymes, the single-enzyme NMR assays are not prone to coupled-assay false positives. This attribute makes them useful as orthogonal assays, complementing traditional high throughput screening assays and benchtop triage assays. Detailed protocols are provided for initial compound assays at 500 μM and 250 μM, dose-response assays for determining IC50 values, detergent counter screen assays, jump-dilution counter screen assays, and assays in E. coli whole cells. The methods are demonstrated using two nucleoside ribohydrolase enzymes. The use of 1H NMR is shown for the purine-specific enzyme, while 19F NMR is shown for the pyrimidine-specific enzyme. The protocols are generally applicable to any enzyme where substrate and product resonances can be observed and distinguished by NMR spectroscopy. To be the most useful in the context of drug discovery, the final concentration of substrate should be no more than 2-3x its Km value. The choice of NMR experiment depends on the enzyme reaction and substrates available as well as available NMR instrumentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wagma Caravan
- Department of Chemistry, Adelphi University; Department of Chemistry, Washington University in St. Louis
| | - Samantha N Muellers
- Department of Chemistry, Adelphi University; Department of Chemistry, Boston University
| |
Collapse
|
12
|
Muellers SN, Gonzalez JA, Kaur A, Sapojnikov V, Benzie AL, Brown DG, Parkin DW, Stockman BJ. Ligand-Efficient Inhibitors of Trichomonas vaginalis Adenosine/Guanosine Preferring Nucleoside Ribohydrolase. ACS Infect Dis 2019; 5:345-352. [PMID: 30701958 DOI: 10.1021/acsinfecdis.8b00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichomoniasis is caused by the parasitic protozoan Trichomonas vaginalis and is the most prevalent, nonviral sexually transmitted disease. The parasite has shown increasing resistance to the current 5-nitroimidazole therapies indicating the need for new therapies with different mechanisms. T. vaginalis is an obligate parasite that scavenges nucleosides from host cells and then uses salvage pathway enzymes to obtain the nucleobases. The adenosine/guanosine preferring nucleoside ribohydrolase was screened against a 2000-compound diversity fragment library using a 1H NMR-based activity assay. Three classes of inhibitors with more than five representatives were identified: bis-aryl phenols, amino bicyclic pyrimidines, and aryl acetamides. Among the active fragments were 10 compounds with ligand efficiency values greater than 0.5, including five with IC50 values <10 μM. Jump-dilution and detergent counter screens validated reversible, target-specific activity. The data reveals an emerging SAR that is guiding our medicinal chemistry efforts aimed at discovering compounds with nanomolar potency.
Collapse
Affiliation(s)
- Samantha N. Muellers
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Juliana A. Gonzalez
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Abinash Kaur
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Vital Sapojnikov
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Annie Laurie Benzie
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Dean G. Brown
- Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David W. Parkin
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Brian J. Stockman
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| |
Collapse
|
13
|
Küng E, Fürnkranz U, Walochnik J. Chemotherapeutic options for the treatment of human trichomoniasis. Int J Antimicrob Agents 2018; 53:116-127. [PMID: 30612993 DOI: 10.1016/j.ijantimicag.2018.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/11/2018] [Accepted: 10/20/2018] [Indexed: 01/08/2023]
Abstract
Trichomonas vaginalis is the causative agent of the most common non-viral sexually transmitted disease worldwide. The infection may be associated with severe complications, including infertility, preterm labour, cancer and an increased risk of human immunodeficiency virus (HIV) transmission. Treatment remains almost exclusively based on 5-nitroimidazoles, but resistance is on the rise. This article provides an overview of clinically evaluated systemic and topical treatment options for human trichomoniasis and summarises the current state of knowledge on various herbal, semisynthetic and synthetic compounds evaluated for their anti-Trichomonas efficacy in vitro.
Collapse
Affiliation(s)
- Erik Küng
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Ursula Fürnkranz
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria.
| |
Collapse
|
14
|
Alam R, Barbarovich AT, Caravan W, Ismail M, Barskaya A, Parkin DW, Stockman BJ. Druggability of the guanosine/adenosine/cytidine nucleoside hydrolase from Trichomonas vaginalis. Chem Biol Drug Des 2018; 92:1736-1742. [PMID: 29808562 DOI: 10.1111/cbdd.13341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/28/2018] [Accepted: 05/06/2018] [Indexed: 12/15/2022]
Abstract
Trichomonas vaginalis infects approximately 300 million people worldwide annually. Infected individuals have a higher susceptibility to more serious conditions such as cervical and prostate cancer. The parasite has developed increasing resistance to current drug therapies, with an estimated 5% of clinical cases resulting from resistant strains, creating the need for new therapeutic strategies with novel mechanisms of action. Nucleoside salvage pathway enzymes represent novel drug targets as these pathways are essential for the parasite's survival. The guanosine/adenosine/cytidine nucleoside hydrolase (GACNH) may be particularly important as its expression is upregulated under glucose-limiting conditions mimicking those that occur during infection establishment. GACNH was screened against the NIH Clinical Collection to explore its druggability. Seven compounds were identified with IC50 values <20 μM. Extensive overlap was found between inhibitors of GACNH and the adenosine/guanosine nucleoside hydrolase (AGNH), but no overlap was found with inhibitors of the uridine nucleoside hydrolase. The guanosine analog ribavirin was the only compound found to be specific for GACNH. Compounds that inhibit both AGNH and GACNH purine salvage pathway enzymes may prove critical given the role that GACNH appears to play in the early stages of infection.
Collapse
Affiliation(s)
- Rayyan Alam
- Department of Chemistry, Adelphi University, Garden City, New York
| | | | - Wagma Caravan
- Department of Chemistry, Adelphi University, Garden City, New York
| | - Mirna Ismail
- Department of Chemistry, Adelphi University, Garden City, New York
| | - Angela Barskaya
- Department of Chemistry, Adelphi University, Garden City, New York
| | - David W Parkin
- Department of Chemistry, Adelphi University, Garden City, New York
| | - Brian J Stockman
- Department of Chemistry, Adelphi University, Garden City, New York
| |
Collapse
|
15
|
Singh G, Chowdhary K, Satija P, Singh A, Singh B, Singh K, Espinosa C, Esteban MA, Sehgal R, Verma V. Synthesis and Immobilization of Benzothiazole-Appended Triazole-Silane: Biological Evaluation and Molecular Docking Approach. ChemistrySelect 2018. [DOI: 10.1002/slct.201703017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies; Panjab University; Chandigarh 160014 India
| | - Kavita Chowdhary
- Department of Chemistry and Centre of Advanced Studies; Panjab University; Chandigarh 160014 India
| | - Pinky Satija
- Department of Chemistry and Centre of Advanced Studies; Panjab University; Chandigarh 160014 India
| | - Akshpreet Singh
- Department of Chemistry and Centre of Advanced Studies; Panjab University; Chandigarh 160014 India
| | - Baljinder Singh
- Department of Biotechnology; Panjab University; Chandigarh 160014 India
| | - Kashmir Singh
- Department of Biotechnology; Panjab University; Chandigarh 160014 India
| | - Cristóbal Espinosa
- Department of Cell Biology & Histology, Faculty of Biology; University of Murcia; 30100 Murcia Spain
| | - M. Angeles Esteban
- Department of Cell Biology & Histology, Faculty of Biology; University of Murcia; 30100 Murcia Spain
| | - Rakesh Sehgal
- Department of Medical Parasitology; PGIMER; Chandigarh- 160012 India
| | - Vikas Verma
- Guru Jhambeshwar University of Science and Technology; Hisar 125001 India
| |
Collapse
|
16
|
Thiopurine Drugs Repositioned as Tyrosinase Inhibitors. Int J Mol Sci 2017; 19:ijms19010077. [PMID: 29283382 PMCID: PMC5796027 DOI: 10.3390/ijms19010077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023] Open
Abstract
Drug repositioning is the application of the existing drugs to new uses and has the potential to reduce the time and cost required for the typical drug discovery process. In this study, we repositioned thiopurine drugs used for the treatment of acute leukaemia as new tyrosinase inhibitors. Tyrosinase catalyses two successive oxidations in melanin biosynthesis: the conversions of tyrosine to dihydroxyphenylalanine (DOPA) and DOPA to dopaquinone. Continuous efforts are underway to discover small molecule inhibitors of tyrosinase for therapeutic and cosmetic purposes. Structure-based virtual screening predicted inhibitor candidates from the US Food and Drug Administration (FDA)-approved drugs. Enzyme assays confirmed the thiopurine leukaemia drug, thioguanine, as a tyrosinase inhibitor with the inhibitory constant of 52 μM. Two other thiopurine drugs, mercaptopurine and azathioprine, were also evaluated for their tyrosinase inhibition; mercaptopurine caused stronger inhibition than thioguanine did, whereas azathioprine was a poor inhibitor. The inhibitory constant of mercaptopurine (16 μM) was comparable to that of the well-known inhibitor kojic acid (13 μM). The cell-based assay using B16F10 melanoma cells confirmed that the compounds inhibit mammalian tyrosinase. Particularly, 50 μM thioguanine reduced the melanin content by 57%, without apparent cytotoxicity. Cheminformatics showed that the thiopurine drugs shared little chemical similarity with the known tyrosinase inhibitors.
Collapse
|
17
|
Bala V, Chhonker YS. Recent developments in anti-Trichomonas research: An update review. Eur J Med Chem 2017; 143:232-243. [PMID: 29175675 DOI: 10.1016/j.ejmech.2017.11.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022]
Abstract
Trichomonas vaginalis is a major non-viral sexually-transmitted infection resulted into serious obstetrical and gynecological troubles. The increasing resistance to nitroimidazole therapy and recurrence makes it crucial to develop new drugs against trichomoniasis. Over the past few years, a large number of research articles highlighting the synthetic and natural product research to combat Trichomonas vaginalis have been published. Electronic databases were searched to collect all data from the year 2006 through June 2017 for anti-Trichomonas activity potential of synthetic and natural products. This review article put together the synthetic and natural product research to find out an effective metronidazole alternative to cure trichomoniasis.
Collapse
Affiliation(s)
- Veenu Bala
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, 313001, India.
| | - Yashpal S Chhonker
- College of Pharmacy, Department of Pharmacy Practice, University of Nebraska Medical Centre, Omaha, USA.
| |
Collapse
|
18
|
Błachut D, Szawkało J, Czarnocki Z. A convenient route to symmetrically and unsymmetrically substituted 3,5-diaryl-2,4,6-trimethylpyridines via Suzuki-Miyaura cross-coupling reaction. Beilstein J Org Chem 2016; 12:835-45. [PMID: 27340474 PMCID: PMC4901938 DOI: 10.3762/bjoc.12.82] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/08/2016] [Indexed: 12/25/2022] Open
Abstract
A series of differently substituted 3,5-diaryl-2,4,6-trimethylpyridines were prepared and characterized using the Suzuki-Miyaura coupling reaction with accordingly selected bromo-derivatives and arylboronic acids. The reaction conditions were carefully optimized allowing high yield of isolated products and also the construction of unsymmetrically substituted diarylpyridines, difficult to access by other methods.
Collapse
Affiliation(s)
- Dariusz Błachut
- Forensic Laboratory, Internal Security Agency, 1 Sierpnia 30A, 02-134 Warsaw, Poland, Tel.: +48 693830760
| | - Joanna Szawkało
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Zbigniew Czarnocki
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
19
|
Singh G, Arora A, Mangat SS, Rani S, Kaur H, Goyal K, Sehgal R, Maurya IK, Tewari R, Choquesillo-Lazarte D, Sahoo S, Kaur N. Design, synthesis and biological evaluation of chalconyl blended triazole allied organosilatranes as giardicidal and trichomonacidal agents. Eur J Med Chem 2016; 108:287-300. [DOI: 10.1016/j.ejmech.2015.11.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 01/05/2023]
|
20
|
Fluorine nuclear magnetic resonance-based assay in living mammalian cells. Anal Biochem 2015; 495:52-9. [PMID: 26686030 DOI: 10.1016/j.ab.2015.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
Nuclear magnetic resonance (NMR)-based screening has been recognized as a powerful approach for the identification and characterization of molecules interacting with pharmaceutical targets. Indeed, several NMR methods have been developed and successfully applied to many drug discovery projects. Whereas most of these approaches have targeted isolated biomolecular receptors, very few cases are reported with the screening performed in intact cells and cell extracts. Here we report the first successful application of the fluorine NMR-based assay n-FABS (n-fluorine atoms for biochemical screening) in living mammalian cells expressing the membrane protein fatty acid amide hydrolase (FAAH). This method allows the identification of both weak and potent inhibitors and the measurement of their potency in a physiological environment.
Collapse
|
21
|
Adenosine/guanosine preferring nucleoside ribohydrolase is a distinct, druggable antitrichomonal target. Bioorg Med Chem Lett 2015; 25:5036-9. [DOI: 10.1016/j.bmcl.2015.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022]
|