1
|
Martinez SJ, Nardella GN, Rodríguez ME, Rivero CV, Agüero F, Romano PS. Biological features of TcM: A new Trypanosoma cruzi isolate from Argentina classified into TcV lineage. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100152. [PMID: 35909611 PMCID: PMC9325899 DOI: 10.1016/j.crmicr.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TcM is a new T. cruzi isolate that belongs to DTU TcV. TcV is a T. cruzi linage prevalent in human infections of Argentina. TcM is less virulent that TcY strain. TcM displays slow-growing rate and muscle tissue tropism. TcM is more susceptible to benznidazole than TcY.
Trypanosoma cruzi, the etiologic agent of Chagas disease (CD) presents a wide genetic and phenotypic diversity that is classified into seven lineages or discrete typing units (DTU: TcI to TcVI and Tcbat). Although isolates and strains that belong to a particular group can share some attributes, such as geographic distribution, others like growth rate, cell tropism, and response to treatment can be highly variable. In addition, studies that test new trypanocidal drugs are frequently conducted on T. cruzi strains maintained for a long time in axenic culture, resulting in changes in parasite virulence and other important features. This work aimed to isolate and characterize a new T. cruzi strain from a chronic Chagas disease patient. The behavior of this isolate was studied by using standard in vitro assays and in vivo mice infection tests and compared with the T. cruzi Y strain (TcY), broadly used in research laboratories worldwide. Data showed that TcM behaves as a slow-growing strain in vitro that develops chronic infections in mice and displays high tropism to muscular tissues, in accordance with its clinical performance. In contrast, the Y strain behaved as an acute strain that can infect different types of cells and tissues. Interestingly, TcM, which belongs to DTU TcV, is more susceptible to benznidazole than TcY, a TcII strain considered moderately resistant to this drug. These differential properties contribute to the characterization of a TcV strain, one of the main lineages in the southern countries of South America, and open the possibility to introduce changes that improve the management of Chagas patients in the future
Collapse
Affiliation(s)
- Santiago José Martinez
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Mendoza, Argentina
| | | | - Matías Exequiel Rodríguez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-CONICET-UNSAM), Buenos Aires, Argentina
| | - Cynthia Vanesa Rivero
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Mendoza, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-CONICET-UNSAM), Buenos Aires, Argentina
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Mendoza, Argentina
- Facultad de Ciencias Médicas. Universidad Nacional de Cuyo (FCM-UNCUYO), Mendoza, Argentina
- Corresponding author at: Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500) Mendoza, Argentina
| |
Collapse
|
2
|
Nichugovskiy A, Tron GC, Maslov M. Recent Advances in the Synthesis of Polyamine Derivatives and Their Applications. Molecules 2021; 26:6579. [PMID: 34770986 PMCID: PMC8588431 DOI: 10.3390/molecules26216579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Biogenic polyamines (PAs) are involved in the growth and development of normal cells, and their intracellular concentration is stable. The concentration of PAs in cancer cells is significantly increased to promote and sustain their rapid proliferation. Over the years, synthetic PAs, which differ in their structure, have demonstrated high antitumor activity and are involved in clinical trials. The chemical synthesis of PAs and their conjugates require the correct choice of synthetic pathways-methods for constructing conjugates and the orthogonal protection of amino groups. The most common methods of synthesis of PA conjugates are acylation of regioselectively protected PAs or their alkylation under the conditions of the Fukuyama reaction. One of the most promising methods of PA synthesis is the use of a multicomponent Ugi reaction, which allows various PAs to be obtained in high yields. In this review, we describe and analyze various approaches that are used in the synthesis of polyamines and their conjugates.
Collapse
Affiliation(s)
- Artemiy Nichugovskiy
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia;
| | - Gian Cesare Tron
- Dipartimento di Scienza del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy;
| | - Mikhail Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia;
| |
Collapse
|
3
|
New insights into the mechanism of action of the cyclopalladated complex - CP2 in Leishmania: Calcium Dysregulation, Mitochondrial Dysfunction and Cell Death. Antimicrob Agents Chemother 2021; 66:e0076721. [PMID: 34633848 DOI: 10.1128/aac.00767-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current treatment of leishmaniasis is based on few drugs that present several drawbacks such as high toxicity, difficult administration route, and low efficacy. These disadvantages raise the necessity to develop novel antileishmanial compounds allied to a comprehensive understanding of their mechanisms of action. Here, we elucidate the probably mechanism of action of the antileishmanial binuclear cyclopalladated complex [Pd(dmba)(μ-N3)]2 (CP2) in Leishmania amazonensis. CP2 causes oxidative stress in the parasite resulting in disruption of mitochondrial Ca2+ homeostasis, cell cycle arrest at S-phase, increasing the ROS production and overexpression of stress-related and cell detoxification proteins, collapsing the Leishmania mitochondrial membrane potential and promotes apoptotic-like features in promastigotes leading to necrosis or directs programmed cell death (PCD)-committed cells toward necrotic-like destruction. Moreover, CP2 is able to reduce the parasite load in both liver and spleen in Leishmania infantum-infected hamsters when treated for 15 days with 1.5 mg/Kg/day CP2, expanding its potential application in addition to the already known effectiveness on cutaneous leishmaniasis for the treatment of visceral leishmaniasis, showing the broad spectrum of action of this cyclopalladated complex. The data herein presented bring new insights into the CP2 molecular mechanisms of action, assisting to promote its rational modification to improve both safety and efficacy.
Collapse
|
4
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
Navarro M, Justo RMS, Delgado GYS, Visbal G. Metallodrugs for the Treatment of Trypanosomatid Diseases: Recent Advances and New Insights. Curr Pharm Des 2021; 27:1763-1789. [PMID: 33185155 DOI: 10.2174/1381612826666201113104633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Trypanosomatid parasites are responsible for many Neglected Tropical Diseases (NTDs). NTDs are a group of illnesses that prevail in low-income populations, such as in tropical and subtropical areas of Africa, Asia, and the Americas. The three major human diseases caused by trypanosomatids are African trypanosomiasis, Chagas disease and leishmaniasis. There are known drugs for the treatment of these diseases that are used extensively and are affordable; however, the use of these medicines is limited by several drawbacks such as the development of chemo-resistance, side effects such as cardiotoxicity, low selectivity, and others. Therefore, there is a need to develop new chemotherapeutic against these tropical parasitic diseases. Metal-based drugs against NTDs have been discussed over the years as alternative ways to overcome the difficulties presented by approved antiparasitic agents. The study of late transition metal-based drugs as chemotherapeutics is an exciting research field in chemistry, biology, and medicine due to the ability to develop multitarget antiparasitic agents. The evaluation of the late transition metal complexes for the treatment of trypanosomatid diseases is provided here, as well as some insights about their mechanism of action.
Collapse
Affiliation(s)
- Maribel Navarro
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Rodrigo M S Justo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Giset Y Sánchez Delgado
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Gonzalo Visbal
- Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Brazil
| |
Collapse
|
6
|
Silva LR, Guimarães AS, do Nascimento J, do Santos Nascimento IJ, da Silva EB, McKerrow JH, Cardoso SH, da Silva-Júnior EF. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg Med Chem 2021; 41:116213. [PMID: 33992862 DOI: 10.1016/j.bmc.2021.116213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022]
Abstract
Chagas disease and Human African Trypanosomiasis (HAT) are caused by Trypanosoma cruzi and T. brucei parasites, respectively. Cruzain (CRZ) and Rhodesain (RhD) are cysteine proteases that share 70% of identity and play vital functions in these parasites. These macromolecules represent promising targets for designing new inhibitors. In this context, 26 CRZ and 5 RhD 3D-structures were evaluated by molecular redocking to identify the most accurate one to be utilized as a target. Posteriorly, a virtual screening of a library containing 120 small natural and nature-based compounds was performed on both of them. In total, 14 naphthoquinone-based analogs were identified, synthesized, and biologically evaluated. In total, five compounds were active against RhD, being three of them also active on CRZ. A derivative of 1,4-naphthoquinonepyridin-2-ylsulfonamide was found to be the most active molecule, exhibiting IC50 values of 6.3 and 1.8 µM for CRZ and RhD, respectively. Dynamic simulations at 100 ns demonstrated good stability and do not alter the targets' structures. MM-PBSA calculations revealed that it presents a higher affinity for RhD (-25.3 Kcal mol-1) than CRZ, in which van der Waals interactions were more relevant. A mechanistic hypothesis (via C3-Michael-addition reaction) involving a covalent mode of inhibition for this compound towards RhD was investigated by covalent molecular docking and DFT B3LYP/6-31 + G* calculations, exhibiting a low activation energy (ΔG‡) and providing a stable product (ΔG), with values of 7.78 and - 39.72 Kcal mol-1, respectively; similar to data found in the literature. Nevertheless, a reversibility assay by dilution revealed that JN-11 is a time-dependent and reversible inhibitor. Finally, this study applies modern computer-aided techniques to identify promising inhibitors from a well-known chemical class of natural products. Then, this work could inspire other future studies in the field, being useful for designing potent naphthoquinones as RhD inhibitors.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Ari Souza Guimarães
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Jadiely do Nascimento
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Igor José do Santos Nascimento
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Elany Barbosa da Silva
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - James H McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sílvia Helena Cardoso
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil.
| |
Collapse
|
7
|
Costa NCS, Piccoli JP, Santos-Filho NA, Clementino LC, Fusco-Almeida AM, De Annunzio SR, Fontana CR, Verga JBM, Eto SF, Pizauro-Junior JM, Graminha MAS, Cilli EM. Antimicrobial activity of RP-1 peptide conjugate with ferrocene group. PLoS One 2020; 15:e0228740. [PMID: 32214347 PMCID: PMC7098557 DOI: 10.1371/journal.pone.0228740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
Parasitic diseases are a neglected and serious problem, especially in underdeveloped countries. Among the major parasitic diseases, Leishmaniasis figures as an urgent challenge due to its high incidence and severity. At the same time, the indiscriminate use of antibiotics by the population is increasing together with resistance to medicines. To address this problem, new antibiotic-like molecules that directly kill or inhibit the growth of microorganisms are necessary, where antimicrobial peptides (AMPs) can be of great help. In this work, the ferrocene molecule, one active compound with low levels of in vivo toxicity, was coupled to the N-terminus of the RP1 peptide (derived from the human chemokine CXCL4), aiming to evaluate how this change modifies the structure, biological activity, and toxicity of the peptide. The peptide and the conjugate were synthesized using the solid phase peptide synthesis (SPPS). Circular dichroism assays in PBS showed that the RP1 peptide and its conjugate had a typical spectrum for disordered structures. The Fc-RP1 presented anti-amastigote activity against Leishmania amazonensis (IC50 = 0.25 μmol L–1). In comparison with amphotericin B, a second-line drug approved for leishmaniasis treatment, (IC50 = 0.63 μmol L-1), Fc-RP1 was more active and showed a 2.5-fold higher selectivity index. The RP1 peptide presented a MIC of 4.3 μmol L-1 against S. agalactiae, whilst Fc-RP1 was four times more active (MIC = 0.96 μmol L-1), indicating that ferrocene improved the antimicrobial activity against Gram-positive bacteria. The Fc-RP1 peptide also decreased the minimum inhibitory concentration (MIC) in the assays against E. faecalis (MIC = 7.9 μmol L-1), E. coli (MIC = 3.9 μmol L-1) and S. aureus (MIC = 3.9 μmol L-1). The cytotoxicity of the compounds was tested against HaCaT cells, and no significant activity at the highest concentration tested (500 μg. mL-1) was observed, showing the high potential of this new compound as a possible new drug. The coupling of ferrocene also increased the vesicle permeabilization of the peptide, showing a direct relation between high peptide concentration and high carboxyfluorescein release, which indicates the action mechanism by pore formation on the vesicles. Several studies have shown that ferrocene destabilizes cell membranes through lipid peroxidation, leading to cell lysis. It is noteworthy that the Fc-RP1 peptide synthesized here is a prototype of a bioconjugation strategy, but it still is a compound with great biological activity against neglected and fish diseases.
Collapse
Affiliation(s)
- Natalia C. S. Costa
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Julia P. Piccoli
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Norival A. Santos-Filho
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leandro C. Clementino
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ana M. Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Sarah R. De Annunzio
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carla R. Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Juliane B. M. Verga
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Silas F. Eto
- Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - João M. Pizauro-Junior
- Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcia A. S. Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
- * E-mail: (EMC); (MASG)
| | - Eduardo M. Cilli
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
- * E-mail: (EMC); (MASG)
| |
Collapse
|
8
|
Koko WS, Jentzsch J, Kalie H, Schobert R, Ersfeld K, Al Nasr IS, Khan TA, Biersack B. Evaluation of the antiparasitic activities of imidazol‐2‐ylidene–gold(I) complexes. Arch Pharm (Weinheim) 2020; 353:e1900363. [DOI: 10.1002/ardp.201900363] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Waleed S. Koko
- College of Science and Arts in Ar RassQassim University Ar Rass Saudi Arabia
| | - Jana Jentzsch
- Laboratory of Molecular ParasitologyUniversity of Bayreuth Bayreuth Germany
| | - Hussein Kalie
- Organic Chemistry LaboratoryUniversity of Bayreuth Bayreuth Germany
| | - Rainer Schobert
- Organic Chemistry LaboratoryUniversity of Bayreuth Bayreuth Germany
| | - Klaus Ersfeld
- Laboratory of Molecular ParasitologyUniversity of Bayreuth Bayreuth Germany
| | - Ibrahim S. Al Nasr
- College of Science and Arts in Ar RassQassim University Ar Rass Saudi Arabia
- College of Science and Arts in UnaizahQassim University Unaizah Saudi Arabia
| | - Tariq A. Khan
- College of Applied Health Sciences in Ar RassQassim University Ar Rass Saudi Arabia
| | | |
Collapse
|
9
|
Lucchetti BFC, Boaretto N, Lopes FNC, Malvezi AD, Lovo-Martins MI, Tatakihara VLH, Fattori V, Pereira RS, Verri WA, de Almeida Araujo EJ, Pinge-Filho P, Martins-Pinge MC. Metabolic syndrome agravates cardiovascular, oxidative and inflammatory dysfunction during the acute phase of Trypanosoma cruzi infection in mice. Sci Rep 2019; 9:18885. [PMID: 31827186 PMCID: PMC6906468 DOI: 10.1038/s41598-019-55363-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
We evaluated the influence of metabolic syndrome (MS) on acute Trypanosoma cruzi infection. Obese Swiss mice, 70 days of age, were subjected to intraperitoneal infection with 5 × 102 trypomastigotes of the Y strain. Cardiovascular, oxidative, inflammatory, and metabolic parameters were evaluated in infected and non-infected mice. We observed higher parasitaemia in the infected obese group (IOG) than in the infected control group (ICG) 13 and 15 days post-infection. All IOG animals died by 19 days post-infection (dpi), whereas 87.5% of the ICG survived to 30 days. Increased plasma nitrite levels in adipose tissue and the aorta were observed in the IOG. Higher INF-γ and MCP-1 concentrations and lower IL-10 concentrations were observed in the IOG compared to those in the ICG. Decreased insulin sensitivity was observed in obese animals, which was accentuated after infection. Higher parasitic loads were found in adipose and hepatic tissue, and increases in oxidative stress in cardiac, hepatic, and adipose tissues were characteristics of the IOG group. Thus, MS exacerbates experimental Chagas disease, resulting in greater damage and decreased survival in infected animals, and might be a warning sign that MS can influence other pathologies.
Collapse
Affiliation(s)
- Bruno Fernando Cruz Lucchetti
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Department of Physiotherapy, University Center of Araguaia Valley, Barra do Garças, MT, Brazil
| | - Natalia Boaretto
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Fernanda Novi Cortegoso Lopes
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Aparecida Donizette Malvezi
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Maria Isabel Lovo-Martins
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Vera Lúcia Hideko Tatakihara
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Victor Fattori
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Rito Santo Pereira
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Phileno Pinge-Filho
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Marli Cardoso Martins-Pinge
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
10
|
Paucar R, Martín-Escolano R, Moreno-Viguri E, Cirauqui N, Rodrigues CR, Marín C, Sánchez-Moreno M, Pérez-Silanes S, Ravera M, Gabano E. A step towards development of promising trypanocidal agents: Synthesis, characterization and in vitro biological evaluation of ferrocenyl Mannich base-type derivatives. Eur J Med Chem 2019; 163:569-582. [DOI: 10.1016/j.ejmech.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023]
|
11
|
Ong YC, Roy S, Andrews PC, Gasser G. Metal Compounds against Neglected Tropical Diseases. Chem Rev 2018; 119:730-796. [DOI: 10.1021/acs.chemrev.8b00338] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yih Ching Ong
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Saonli Roy
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philip C. Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
12
|
Coelho GS, Andrade JS, Xavier VF, Sales Junior PA, Rodrigues de Araujo BC, Fonseca KDS, Caetano MS, Murta SMF, Vieira PM, Carneiro CM, Taylor JG. Design, synthesis, molecular modelling, and in vitro evaluation of tricyclic coumarins against Trypanosoma cruzi. Chem Biol Drug Des 2018; 93:337-350. [PMID: 30362274 DOI: 10.1111/cbdd.13420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 11/29/2022]
Abstract
Chagas disease is caused by infection with the parasite protozoan Trypanosoma cruzi and affects about 8 million people in 21 countries in Latin America. The main form of treatment of this disease is still based on the use of two drugs, benznidazole and nifurtimox, which both present low cure rates in the chronic phase and often have serious side-effects. Herein, we describe the synthesis of tricyclic coumarins that were obtained via NHC organocatalysis and evaluation of their trypanocidal activity. Molecular docking studies against trypanosomal enzyme triosephosphate isomerase (TIM) were carried out, as well as a theoretical study of the physicochemical parameters. The tricyclic coumarins were tested in vitro against the intracellular forms of Trypanosoma cruzi. Among the 18 compounds tested, 10 were more active than the reference drug benznidazole. The trypanocidal activity of the lead compound was rationalized by molecular docking study which suggested the strong interaction with the enzyme TIM by T. cruzi and therefore indicating a possible mode of action. Furthermore, the selectivity index of eight tricyclic coumarins with high anti-T. cruzi activity was above 50 and thus showing that these lead compounds are viable candidates for further in vivo assays.
Collapse
Affiliation(s)
| | | | - Viviane Flores Xavier
- Immunopathology Laboratory, NUPEB, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | | | - Kátia da Silva Fonseca
- Immunopathology Laboratory, NUPEB, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | | | - Paula Melo Vieira
- Immunopathology Laboratory, NUPEB, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Jason Guy Taylor
- Chemistry Department, ICEB, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
13
|
Scarim CB, Jornada DH, Chelucci RC, de Almeida L, Dos Santos JL, Chung MC. Current advances in drug discovery for Chagas disease. Eur J Med Chem 2018; 155:824-838. [PMID: 30033393 DOI: 10.1016/j.ejmech.2018.06.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022]
Abstract
Chagas disease, also known as American trypanosomiasis, is one of the 17 neglected tropical diseases (NTDs) according to World Health Organization. It is estimated that 8-10 million people are infected worldwide, mainly in Latin America. Chagas disease is caused by the parasite Trypanosoma cruzi and is characterized by two phases: acute and chronic. The current therapy for Chagas disease is limited to drugs such as nifurtimox and benznidazole, which are effective in treating only the acute phase of the disease. In addition, several side effects ranging from hypersensitivity to bone marrow depression and peripheral polyneuropathy have been associated with these drugs. Therefore, the current challenge is to find new effective and safe drugs against this NTD. The aim of this review is to describe the advances in the medicinal chemistry of new anti-chagasic compounds reported in the literature in the last five years. We report promising prototypes for drug discovery identified through target-based and phenotype-based strategies and present some important targets for the development of new synthetic compounds.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil.
| | - Daniela Hartmann Jornada
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Rafael Consolin Chelucci
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Leticia de Almeida
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, USP, Brazil
| | - Jean Leandro Dos Santos
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Man Chin Chung
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| |
Collapse
|
14
|
Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases. Eur J Med Chem 2018; 155:459-482. [PMID: 29908440 DOI: 10.1016/j.ejmech.2018.05.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/21/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022]
Abstract
The development of safe and affordable antiparasitic agents effective against neglected tropical diseases is a big challenge of the drug discovery. The drugs currently employed have limitations such as poor efficacy, drug resistance or side effects. Thus, the search for new promising drugs is more and more crucial. Metal complexes and, in particular, organometallic compounds may expand the list of the drug candidates due to the peculiar attributes that the presence of the metal core add to the organic fragment (e.g., redox and structural features, ability to interact with DNA or protein targets, etc.). To date, most organometallic compounds tested as anti-neglected tropical diseases are based on similarities or activity of the organic ligands against other diseases or parasites and/or consist in modification of existing drugs combining the features of the metal moiety and the organic ligands. This review focuses on recent studies (2012-2017) on organometallic compounds in treating kinetoplastid-caused diseases such as Human African trypanosomiasis, Chagas disease and leishmaniasis. This field of research, however, still lacks exhaustive studies to identify of parasitic targets and quantitative structure-activity relationships for a rational drug design.
Collapse
|
15
|
Design of prospective antiparasitic metal-based compounds including selected organometallic cores. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Polyamine-based analogs and conjugates as antikinetoplastid agents. Eur J Med Chem 2017; 139:982-1015. [DOI: 10.1016/j.ejmech.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
|
17
|
Velásquez AMA, Ribeiro WC, Venn V, Castelli S, Camargo MSD, de Assis RP, de Souza RA, Ribeiro AR, Passalacqua TG, da Rosa JA, Baviera AM, Mauro AE, Desideri A, Almeida-Amaral EE, Graminha MAS. Efficacy of a Binuclear Cyclopalladated Compound Therapy for Cutaneous Leishmaniasis in the Murine Model of Infection with Leishmania amazonensis and Its Inhibitory Effect on Topoisomerase 1B. Antimicrob Agents Chemother 2017; 61:e00688-17. [PMID: 28507113 PMCID: PMC5527659 DOI: 10.1128/aac.00688-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 12/29/2022] Open
Abstract
Leishmaniasis is a disease found throughout the (sub)tropical parts of the world caused by protozoan parasites of the Leishmania genus. Despite the numerous problems associated with existing treatments, pharmaceutical companies continue to neglect the development of better ones. The high toxicity of current drugs combined with emerging resistance makes the discovery of new therapeutic alternatives urgent. We report here the evaluation of a binuclear cyclopalladated complex containing Pd(II) and N,N'-dimethylbenzylamine (Hdmba) against Leishmania amazonensis The compound [Pd(dmba)(μ-N3)]2 (CP2) inhibits promastigote growth (50% inhibitory concentration [IC50] = 13.2 ± 0.7 μM) and decreases the proliferation of intracellular amastigotes in in vitro incubated macrophages (IC50 = 10.2 ± 2.2 μM) without a cytotoxic effect when tested against peritoneal macrophages (50% cytotoxic concentration = 506.0 ± 10.7 μM). In addition, CP2 was also active against T. cruzi intracellular amastigotes (IC50 = 2.3 ± 0.5 μM, selective index = 225), an indication of its potential for use in Chagas disease therapy. In vivo assays using L. amazonensis-infected BALB/c showed an 80% reduction in parasite load compared to infected and nontreated animals. Also, compared to amphotericin B treatment, CP2 did not show any side effects, which was corroborated by the analysis of plasma levels of different hepatic and renal biomarkers. Furthermore, CP2 was able to inhibit Leishmania donovani topoisomerase 1B (Ldtopo1B), a potentially important target in this parasite. (This study has been registered at ClinicalTrials.gov under identifier NCT02169141.).
Collapse
Affiliation(s)
- Angela Maria Arenas Velásquez
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - Willian Campos Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Vutey Venn
- University of Rome, Tor Vergata, Rome, Italy
| | | | | | - Renata Pires de Assis
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | | | - Thaís Gaban Passalacqua
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - João Aristeu da Rosa
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Amanda Martins Baviera
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | | | | | - Marcia A S Graminha
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| |
Collapse
|
18
|
Winter I, Lockhauserbäumer J, Lallinger-Kube G, Schobert R, Ersfeld K, Biersack B. Anti-trypanosomal activity of cationic N -heterocyclic carbene gold(I) complexes. Mol Biochem Parasitol 2017; 214:112-120. [DOI: 10.1016/j.molbiopara.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022]
|
19
|
Differential expression on mitochondrial tryparedoxin peroxidase (mTcTXNPx) in Trypanosoma cruzi after ferrocenyl diamine hydrochlorides treatments. Braz J Infect Dis 2017; 21:125-132. [PMID: 27918890 PMCID: PMC9427605 DOI: 10.1016/j.bjid.2016.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/28/2016] [Indexed: 12/16/2022] Open
Abstract
Resistance to benznidazole in certain strains of Trypanosoma cruzi may be caused by the increased production of enzymes that act on the oxidative metabolism, such as mitochondrial tryparedoxin peroxidase which catalyses the reduction of peroxides. This work presents cytotoxicity assays performed with ferrocenyl diamine hydrochlorides in six different strains of T. cruzi epimastigote forms (Y, Bolivia, SI1, SI8, QMII, and SIGR3). The last four strains have been recently isolated from triatominae and mammalian host (domestic cat). The expression of mitochondrial tryparedoxin peroxidase was analyzed by the Western blotting technique using polyclonal antibody anti mitochondrial tryparedoxin peroxidase obtained from a rabbit immunized with the mitochondrial tryparedoxin peroxidase recombinant protein. All the tested ferrocenyl diamine hydrochlorides were more cytotoxic than benznidazole. The expression of the 25.5 kDa polypeptide of mitochondrial tryparedoxin peroxidase did not increase in strains that were more resistant to the ferrocenyl compounds (SI8 and SIGR3). In addition, a 58 kDa polypeptide was also recognized in all strains. Ferrocenyl diamine hydrochlorides showed trypanocidal activity and the expression of 25.5 kDa mitochondrial tryparedoxin peroxidase is not necessarily increased in some T. cruzi strains. Most likely, other mechanisms, in addition to the over expression of this antioxidative enzyme, should be involved in the escape of parasites from cytotoxic oxidant agents.
Collapse
|
20
|
Russell S, Rahmani R, Jones AJ, Newson HL, Neilde K, Cotillo I, Rahmani Khajouei M, Ferrins L, Qureishi S, Nguyen N, Martinez-Martinez MS, Weaver DF, Kaiser M, Riley J, Thomas J, De Rycker M, Read KD, Flematti GR, Ryan E, Tanghe S, Rodriguez A, Charman SA, Kessler A, Avery VM, Baell JB, Piggott MJ. Hit-to-Lead Optimization of a Novel Class of Potent, Broad-Spectrum Trypanosomacides. J Med Chem 2016; 59:9686-9720. [DOI: 10.1021/acs.jmedchem.6b00442] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Stephanie Russell
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Raphaël Rahmani
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Amy J. Jones
- Eskitis
Institute for Drug Discovery, Griffith University, Brisbane Innovation Park, Don Young
Road, Nathan, Queensland 4111, Australia
| | - Harriet L. Newson
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Kevin Neilde
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- GlaxoSmithKline, 28760 Tres Cantos, Spain
| | | | - Marzieh Rahmani Khajouei
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Lori Ferrins
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sana Qureishi
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Nghi Nguyen
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Donald F. Weaver
- Department
of Chemistry, Dalhousie University, Halifax Nova Scotia B3H 4R2, Canada
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse, 4051 Basel, Switzerland
- University of Basel, Petesplatz
1, 4003 Basel, Switzerland
| | - Jennifer Riley
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - John Thomas
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - Manu De Rycker
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - Kevin D. Read
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - Gavin R. Flematti
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Eileen Ryan
- Centre
for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | - Scott Tanghe
- Anti-Infectives
Screening Core, New York University School of Medicine, New York, New York 10010, United States
| | - Ana Rodriguez
- Anti-Infectives
Screening Core, New York University School of Medicine, New York, New York 10010, United States
| | - Susan A. Charman
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Centre
for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | | | - Vicky M. Avery
- Eskitis
Institute for Drug Discovery, Griffith University, Brisbane Innovation Park, Don Young
Road, Nathan, Queensland 4111, Australia
| | - Jonathan B. Baell
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Matthew J. Piggott
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| |
Collapse
|
21
|
Jin JH, Park EB, Kim KJ, Kim M, Lee S, Lee KT, Yang G, Byun SY, Lee N, Goo J, No JH, Choo DJ, Lee JY. In VitroEvaluation of s-Triazine Derivatives for African Trypanosomiasis. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jae Ho Jin
- Research Institute for Basic Sciences and Department of Chemistry; College of Sciences, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Eun Beul Park
- Research Institute for Basic Sciences and Department of Chemistry; College of Sciences, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Kwang Jong Kim
- Research Institute for Basic Sciences and Department of Chemistry; College of Sciences, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Minju Kim
- Research Institute for Basic Sciences and Department of Chemistry; College of Sciences, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Sunhoe Lee
- Research Institute for Basic Sciences and Department of Chemistry; College of Sciences, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Gyongseon Yang
- Leishmania Research Laboratory (LRL); Institut Pasteur Korea; Gyeonggi-do 463-400 Republic of Korea
| | - Soo Young Byun
- Leishmania Research Laboratory (LRL); Institut Pasteur Korea; Gyeonggi-do 463-400 Republic of Korea
| | - Nakyung Lee
- Leishmania Research Laboratory (LRL); Institut Pasteur Korea; Gyeonggi-do 463-400 Republic of Korea
| | - Junghyun Goo
- Leishmania Research Laboratory (LRL); Institut Pasteur Korea; Gyeonggi-do 463-400 Republic of Korea
| | - Joo Hwan No
- Leishmania Research Laboratory (LRL); Institut Pasteur Korea; Gyeonggi-do 463-400 Republic of Korea
| | - Dong Joon Choo
- Research Institute for Basic Sciences and Department of Chemistry; College of Sciences, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry; College of Sciences, Kyung Hee University; Seoul 130-701 Republic of Korea
| |
Collapse
|
22
|
Brown RW, Hyland CJT. Medicinal organometallic chemistry – an emerging strategy for the treatment of neglected tropical diseases. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00174a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review summarises recent developments in the search for novel organometallic drug compounds for the treatment of neglected tropical diseases.
Collapse
|