1
|
Eiers AK, Vettorazzi S, Tuckermann JP. Journey through discovery of 75 years glucocorticoids: evolution of our knowledge of glucocorticoid receptor mechanisms in rheumatic diseases. Ann Rheum Dis 2024:ard-2023-225371. [PMID: 39107081 DOI: 10.1136/ard-2023-225371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/20/2024] [Indexed: 08/09/2024]
Abstract
For three-quarters of a century, glucocorticoids (GCs) have been used to treat rheumatic and autoimmune diseases. Over these 75 years, our understanding of GCs binding to nuclear receptors, mainly the glucocorticoid receptor (GR) and their molecular mechanisms has changed dramatically. Initially, in the late 1950s, GCs were considered important regulators of energy metabolism. By the 1970s/1980s, they were characterised as ligands for hormone-inducible transcription factors that regulate many aspects of cell biology and physiology. More recently, their impact on cellular metabolism has been rediscovered. Our understanding of cell-type-specific GC actions and the crosstalk between various immune and stromal cells in arthritis models has evolved by investigating conditional GR mutant mice using the Cre/LoxP system. A major achievement in studying the complex, cell-type-specific interplay is the recent advent of omics technologies at single-cell resolution, which will provide further unprecedented insights into the cell types and factors mediating GC responses. Alongside gene-encoded factors, anti-inflammatory metabolites that participate in resolving inflammation by GCs during arthritis are just being uncovered. The translation of this knowledge into therapeutic concepts will help tackle inflammatory diseases and reduce side effects. In this review, we describe major milestones in preclinical research that led to our current understanding of GC and GR action 75 years after the first use of GCs in arthritis.
Collapse
Affiliation(s)
- Ann-Kathrin Eiers
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
2
|
Agea MI, Čmelo I, Dehaen W, Chen Y, Kirchmair J, Sedlák D, Bartůněk P, Šícho M, Svozil D. Chemical space exploration with Molpher: Generating and assessing a glucocorticoid receptor ligand library. Mol Inform 2024; 43:e202300316. [PMID: 38979783 DOI: 10.1002/minf.202300316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/10/2024]
Abstract
Computational exploration of chemical space is crucial in modern cheminformatics research for accelerating the discovery of new biologically active compounds. In this study, we present a detailed analysis of the chemical library of potential glucocorticoid receptor (GR) ligands generated by the molecular generator, Molpher. To generate the targeted GR library and construct the classification models, structures from the ChEMBL database as well as from the internal IMG library, which was experimentally screened for biological activity in the primary luciferase reporter cell assay, were utilized. The composition of the targeted GR ligand library was compared with a reference library that randomly samples chemical space. A random forest model was used to determine the biological activity of ligands, incorporating its applicability domain using conformal prediction. It was demonstrated that the GR library is significantly enriched with GR ligands compared to the random library. Furthermore, a prospective analysis demonstrated that Molpher successfully designed compounds, which were subsequently experimentally confirmed to be active on the GR. A collection of 34 potential new GR ligands was also identified. Moreover, an important contribution of this study is the establishment of a comprehensive workflow for evaluating computationally generated ligands, particularly those with potential activity against targets that are challenging to dock.
Collapse
Affiliation(s)
- M Isabel Agea
- Department of Informatics and Chemistry & CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, 16628, Czech Republic
| | - Ivan Čmelo
- Department of Informatics and Chemistry & CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, 16628, Czech Republic
| | - Wim Dehaen
- Department of Informatics and Chemistry & CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, 16628, Czech Republic
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, 16628, Czech Republic
| | - Ya Chen
- Center for Bioinformatics (ZBH), Department of Informatics, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20146, Hamburg, Germany
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090, Vienna, Austria
| | - Johannes Kirchmair
- Center for Bioinformatics (ZBH), Department of Informatics, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20146, Hamburg, Germany
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090, Vienna, Austria
| | - David Sedlák
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Petr Bartůněk
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Martin Šícho
- Department of Informatics and Chemistry & CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, 16628, Czech Republic
| | - Daniel Svozil
- Department of Informatics and Chemistry & CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, 16628, Czech Republic
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| |
Collapse
|
3
|
Zare F, Solhjoo A, Sadeghpour H, Sakhteman A, Dehshahri A. Structure-based virtual screening, molecular docking, molecular dynamics simulation and MM/PBSA calculations towards identification of steroidal and non-steroidal selective glucocorticoid receptor modulators. J Biomol Struct Dyn 2023; 41:7640-7650. [PMID: 36134594 DOI: 10.1080/07391102.2022.2123392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Glucocorticoids have been used in the treatment of many diseases including inflammatory and autoimmune diseases. Despite the wide therapeutic effects of synthetic glucocorticoids, the use of these compounds has been limited due to side effects such as osteoporosis, immunodeficiency, and hyperglycaemia. To this end, extensive studies have been performed to discover new glucocorticoid modulators with the aim of increasing affinity for the receptor and thus less side effects. In the present work, structure-based virtual screening was used for the identification of novel potent compounds with glucocorticoid effects. The molecules derived from ZINC database were screened on account of structural similarity with some glucocorticoid agonists as the template. Subsequently, molecular docking was performed on 200 selected compounds to obtain the best steroidal and non-steroidal conformations. Three compounds, namely ZINC_000002083318, ZINC_000253697499 and ZINC_000003845653, were selected with the binding energies of -11.5, -10.5, and -9.5 kcal/mol, respectively. Molecular dynamic simulations on superior structures were accomplished with the glucocorticoid receptor. Additionally, root mean square deviations, root mean square fluctuation, radius of gyration, hydrogen bonds, and binding-free energy analysis showed the binding stability of the proposed compounds compared to budesonide as an approved drug. The results demonstrated that all the compounds had suitable binding stability compared to budesonide, while ZINC_000002083318 showed a tighter binding energy compared to the other compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fateme Zare
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Solhjoo
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Deploey N, Van Moortel L, Rogatsky I, Peelman F, De Bosscher K. The Biologist's Guide to the Glucocorticoid Receptor's Structure. Cells 2023; 12:1636. [PMID: 37371105 PMCID: PMC10297449 DOI: 10.3390/cells12121636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The glucocorticoid receptor α (GRα) is a member of the nuclear receptor superfamily and functions as a glucocorticoid (GC)-responsive transcription factor. GR can halt inflammation and kill off cancer cells, thus explaining the widespread use of glucocorticoids in the clinic. However, side effects and therapy resistance limit GR's therapeutic potential, emphasizing the importance of resolving all of GR's context-specific action mechanisms. Fortunately, the understanding of GR structure, conformation, and stoichiometry in the different GR-controlled biological pathways is now gradually increasing. This information will be crucial to close knowledge gaps on GR function. In this review, we focus on the various domains and mechanisms of action of GR, all from a structural perspective.
Collapse
Affiliation(s)
- Nick Deploey
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Laura Van Moortel
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Z. Rosensweig Genomics Center, New York, NY 10021, USA;
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Frank Peelman
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| |
Collapse
|
5
|
Metin R, Akten ED. Drug repositioning to propose alternative modulators for glucocorticoid receptor through structure-based virtual screening. J Biomol Struct Dyn 2022; 40:11418-11433. [PMID: 34355665 DOI: 10.1080/07391102.2021.1960608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Drug repositioning has recently become one of the widely used drug design approaches in proposing alternative compounds with potentially fewer side effects. In this study, structure-based pharmacophore modelling and docking was used to screen existing drug molecules to bring forward potential modulators for ligand-binding domain of human glucocorticoid receptor (hGR). There exist several drug molecules targeting hGR, yet their apparent side effects still persist. Our goal was to disclose new compounds via screening existing drug compounds to bring forward fast and explicit solutions. The so-called shared pharmacophore model was created using the most persistent pharmacophore features shared by several crystal structures of the receptor. The shared model was first used to screen a small database of 75 agonists and 300 antagonists/decoys, and exhibited a successful outcome in its ability to distinguish agonists from antagonists/decoys. Then, it was used to screen a database of over 5000 molecules composed of FDA-approved, worldwide used and investigational drug compounds. A total of 110 compounds satisfying the pharmacophore requirements were subjected to different docking experiments for further assessment of their binding ability. In the final hit list of 54 compounds which fulfilled all scoring criteria, 19 of them were nonsteroidal and when further investigated, each presented a unique scaffold with little structural resemblance to any known nonsteroidal GR modulators. Independent 100 ns long MD simulations conducted on three selected drug candidates in complex with hGR displayed stable conformations incorporating several hydrogen bonds common to all three compounds and the reference molecule dexamethasone.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reyhan Metin
- Graduate Program of Computational Biology and Bioinformatics, Graduate School of Science and Engineering, Kadir Has University, Istanbul, Turkey
| | - Ebru Demet Akten
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
6
|
Hu X, Pang J, Chen C, Jiang D, Shen C, Chai X, Yang L, Zhang X, Xu L, Cui S, Hou T, Li D. Discovery of novel non-steroidal selective glucocorticoid receptor modulators by structure- and IGN-based virtual screening, structural optimization, and biological evaluation. Eur J Med Chem 2022; 237:114382. [PMID: 35483323 DOI: 10.1016/j.ejmech.2022.114382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 11/04/2022]
Abstract
Glucocorticoids (GCs) are the most commonly used anti-inflammatory drugs. However, their excellent therapeutic effects are often accompanied by undesirable side effects. To discover selective glucocorticoid receptor modulators (SGRMs) that preferentially induce transrepression with little or no transactivation activity, a structure-based virtual screening by combining molecular docking and InteractionGraphNet (IGN) rescoring was performed, and compound HP210 was identified. HP210 did not induce the transactivation functions of GR while still acted on the NF-κB mediated tethered transrepression function (IC50 = 2.32 μM), and suppressed the secretion of pro-inflammation cytokines IL-1β and IL-6. Compared with dexamethasone, HP210 showed no cross activities with phylogenetically related mineralcorticoid receptor and progesterone receptor and no significant effect on osteoprotegerin, exhibiting a reduced side-effect profile. Then, guided by the molecular dynamics simulations and binding free energy calculations, compound HP210_b4 with over two-fold higher transrepression activity (IC50 = 0.99 μM) was discovered. This study reported a group of non-steroidal new-scaffold SGRMs, providing valuable clues for the development of novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xueping Hu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jinping Pang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Changwei Chen
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Dejun Jiang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chao Shen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xin Chai
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liu Yang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xujun Zhang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Dan Li
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
7
|
Lesovaya EA, Chudakova D, Baida G, Zhidkova EM, Kirsanov KI, Yakubovskaya MG, Budunova IV. The long winding road to the safer glucocorticoid receptor (GR) targeting therapies. Oncotarget 2022; 13:408-424. [PMID: 35198100 PMCID: PMC8858080 DOI: 10.18632/oncotarget.28191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoids (Gcs) are widely used to treat inflammatory diseases and hematological malignancies, and despite the introduction of novel anti-inflammatory and anti-cancer biologics, the use of inexpensive and effective Gcs is expected to grow. Unfortunately, chronic treatment with Gcs results in multiple atrophic and metabolic side effects. Thus, the search for safer glucocorticoid receptor (GR)-targeted therapies that preserve therapeutic potential of Gcs but result in fewer adverse effects remains highly relevant. Development of selective GR agonists/modulators (SEGRAM) with reduced side effects, based on the concept of dissociation of GR transactivation and transrepression functions, resulted in limited success, and currently focus has shifted towards partial GR agonists. Additional approach is the identification and inhibition of genes associated with Gcs specific side effects. Others and we recently identified GR target genes REDD1 and FKBP51 as key mediators of Gcs-induced atrophy, and selected and validated candidate molecules for REDD1 blockage including PI3K/Akt/mTOR inhibitors. In this review, we summarized classic and contemporary approaches to safer GR-mediated therapies including unique concept of Gcs combination with REDD1 inhibitors. We discussed protective effects of REDD1 inhibitors against Gcs–induced atrophy in skin and bone and underlined the translational potential of this combination for further development of safer and effective Gcs-based therapies.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | - Daria Chudakova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Ekaterina M. Zhidkova
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Kirill I. Kirsanov
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Deparment of General Medical Practice, RUDN University, Moscow, Russia
| | - Marianna G. Yakubovskaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Zhou F, Ye W, Zhu K, Huang Y, Duanmu C, Li Y, Li J, Xu W. The Continuous-flow Synthesis of 1H-Indazoles via Reaction of o-Fluorobenzaldehydes with tert-Butyl Carbazate under High Teperature. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Chen H, Zhou R, Pang J, Guo Y, Chen J, Kang Y, Duan M, Hou T. Molecular View on the Dissociation Pathways and Transactivation Regulation Mechanism of Nonsteroidal GR Ligands. J Chem Inf Model 2021; 62:5233-5245. [PMID: 34506144 DOI: 10.1021/acs.jcim.1c00150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As a major drug target for anti-inflammatory therapy, the glucocorticoid receptor (GR) regulates a wide range of physiological processes through transactivation (TA) or transrepression. GR TA is involved in many adverse effects of GR-targeting drugs, and therefore, the discovery of novel GR ligands with lower TA activity and longer residence time is quite urgent. Undoubtedly, understanding the ligand dissociation mechanisms and the structural basis of the TA regulation is crucial for the development of novel GR-targeting drugs. Here, we used random accelerated molecular dynamics (RAMD) and funnel metadynamics (FM) simulations to explore the dissociation mechanisms of 5 classic glucocorticoids and 6 nonsteroidal GR ligands. Multiple ligand dissociation pathways were discovered. The classic glucocorticoids exhibit a strong preference for Path I, and most nonsteroidal ligands tend to dissociate along mixed pathways. We also find that the distinct unbinding preferences for AZD2906 and AZD9567, two representative nonsteroidal ligands with similar scaffolds but different TA activities, are primarily determined by their different polar interactions with the surrounding residues. Notably, the binding of AZD9567 poses a substantial impact on the conformation of the GR homodimer interface, which provides a valuable clue to understand the mechanisms of the TA-related side effects induced by the adjustments of the homodimerization process. These findings are critical for the structure-based rational design of novel GR ligands with more potent anti-inflammatory potency and reduced side effects.
Collapse
Affiliation(s)
- Haiyi Chen
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China.,National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Rui Zhou
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Jinping Pang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Yue Guo
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Jiawen Chen
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Mojie Duan
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| |
Collapse
|
10
|
Qin J, Cheng W, Duan YT, Yang H, Yao Y. Indazole as a Privileged Scaffold: The Derivatives and their Therapeutic Applications. Anticancer Agents Med Chem 2021; 21:839-860. [PMID: 32819234 DOI: 10.2174/1871520620999200818160350] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heterocyclic compounds, also called heterocycles, are a major class of organic chemical compound that plays a vital role in the metabolism of all living cells. The heterocyclic compound, indazole, has attracted more attention in recent years and is widely present in numerous commercially available drugs. Indazole-containing derivatives, representing one of the most important heterocycles in drug molecules, are endowed with a broad range of biological properties. METHODS A literature search was conducted in PubMed, Google Scholar and Web of Science regarding articles related to indazole and its therapeutic application. RESULTS The mechanism and structure-activity relationship of indazole and its derivatives were described. Based on their versatile biological activities, the compounds were divided into six groups: anti-inflammatory, antibacterial, anti-HIV, antiarrhythmic, antifungal and antitumour. At least 43 indazole-based therapeutic agents were found to be used in clinical application or clinical trials. CONCLUSION This review is a guide for pharmacologists who are in search of valid preclinical/clinical drug compounds where the progress of approved marketed drugs containing indazole scaffold is examined from 1966 to the present day. Future direction involves more diverse bioactive moieties with indazole scaffold and greater insights into its mechanism.
Collapse
Affiliation(s)
- Jinling Qin
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Weyland Cheng
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| | - Hua Yang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| |
Collapse
|
11
|
|
12
|
Rogliani P, Ritondo BL, Puxeddu E, Pane G, Cazzola M, Calzetta L. Experimental Glucocorticoid Receptor Agonists for the Treatment of Asthma: A Systematic Review. J Exp Pharmacol 2020; 12:233-254. [PMID: 32982485 PMCID: PMC7495344 DOI: 10.2147/jep.s237480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
Inhaled corticosteroids (ICSs) are considered the cornerstone of asthma treatment. Despite the solid evidence documenting the efficacy and safety of ICSs at the level of the airways, their use can be affected by pulmonary and systemic adverse events (AEs) when administered chronically and/or at high doses. Thus, there is a pharmacological and medical need for new glucocorticoid (GC) receptor (GR) ligands with a more favorable therapeutic index, in order to overcome the shortcomings of currently available ICSs. The therapeutic profile of GCs can be improved by enhancing genomic mechanisms mediated by transrepression, which is assumed to be responsible for several anti-inflammatory and immunomodulatory actions, rather than transactivation, which causes most of the GC-associated AEs. It was assumed that an independent modulation of the molecular mechanisms underlying transactivation and transrepression could translate into the dissociation of beneficial effects from AEs. Therefore, current research is looking for GCs that are able to elicit prevalently transrepression with negligible transactivating activity. These compounds are known as selective glucocorticoid receptor agonists (SEGRAs). In this review, experimental GR agonists currently in pre-clinical and clinical development for the treatment of asthma have been systematically assessed. Several compounds are currently under pre-clinical development, but only three novel experimental GR agonists (GW870086X, AZD5423, AZD7594) seem to have some potential therapeutic relevance and have entered clinical trials for the treatment of asthma. Since data from pre-clinical studies have not always been confirmed in clinical investigations, well-designed randomized controlled trials are needed in asthmatic patients to confirm the potentially positive benefit/risk ratio of each specific SEGRA and to optimize the development strategy of these agents in respiratory medicine.
Collapse
Affiliation(s)
- Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Beatrice Ludovica Ritondo
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ermanno Puxeddu
- Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Gloria Pane
- Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| |
Collapse
|
13
|
Wang N, Han X, Li J, Wang Y, Yu W, Wang R, Chang J. Comparative study of the bindings between 3-phenyl-1H-indazole and five proteins by isothermal titration calorimetry, spectroscopy and docking methods. J Biomol Struct Dyn 2019; 37:4580-4589. [DOI: 10.1080/07391102.2018.1554511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ning Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Xinxin Han
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Junya Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Ying Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Wenquan Yu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Ruiyong Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Köhler C, Carlström G, Tångefjord S, Papavoine T, Lepistö M, Edman K, Akke M. Backbone 1H, 13C, and 15N resonance assignments of the ligand binding domain of the human wildtype glucocorticoid receptor and the F602S mutant variant. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:263-268. [PMID: 29667121 PMCID: PMC6132842 DOI: 10.1007/s12104-018-9820-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 05/16/2023]
Abstract
The glucocorticoid receptor (GR) is a nuclear hormone receptor that regulates key genes controlling development, metabolism, and the immune response. GR agonists are efficacious for treatment of inflammatory, allergic, and immunological disorders. Steroid hormone binding to the ligand-binding domain (LBD) of GR is known to change the structural and dynamical properties of the receptor, which in turn control its interactions with DNA and various co-regulators and drive the pharmacological response. Previous biophysical studies of the GR LBD have required the use of mutant forms to overcome issues with limited protein stability and high aggregation propensity. However, these mutant variants are known to also influence the functional response of the receptor. Here we report a successful protocol for protein expression, purification, and NMR characterization of the wildtype human GR LBD. We achieved chemical shift assignments for 90% of the LBD backbone resonances, with 216 out of 240 non-proline residues assigned in the 1H-15N TROSY spectrum. These advancements form the basis for future investigations of allosteric effects in GR signaling.
Collapse
Affiliation(s)
- Christian Köhler
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Göran Carlström
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Stefan Tångefjord
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Tineke Papavoine
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Matti Lepistö
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Karl Edman
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Hemmerling M, Nilsson S, Edman K, Eirefelt S, Russell W, Hendrickx R, Johnsson E, Kärrman Mårdh C, Berger M, Rehwinkel H, Abrahamsson A, Dahmén J, Eriksson AR, Gabos B, Henriksson K, Hossain N, Ivanova S, Jansson AH, Jensen TJ, Jerre A, Johansson H, Klingstedt T, Lepistö M, Lindsjö M, Mile I, Nikitidis G, Steele J, Tehler U, Wissler L, Hansson T. Selective Nonsteroidal Glucocorticoid Receptor Modulators for the Inhaled Treatment of Pulmonary Diseases. J Med Chem 2017; 60:8591-8605. [PMID: 28937774 DOI: 10.1021/acs.jmedchem.7b01215] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A class of potent, nonsteroidal, selective indazole ether-based glucocorticoid receptor modulators (SGRMs) was developed for the inhaled treatment of respiratory diseases. Starting from an orally available compound with demonstrated anti-inflammatory activity in rat, a soft-drug strategy was implemented to ensure rapid elimination of drug candidates to minimize systemic GR activation. The first clinical candidate 1b (AZD5423) displayed a potent inhibition of lung edema in a rat model of allergic airway inflammation following dry powder inhalation combined with a moderate systemic GR-effect, assessed as thymic involution. Further optimization of inhaled drug properties provided a second, equally potent, candidate, 15m (AZD7594), that demonstrated an improved therapeutic ratio over the benchmark inhaled corticosteroid 3 (fluticasone propionate) and prolonged the inhibition of lung edema, indicating potential for once-daily treatment.
Collapse
Affiliation(s)
- Martin Hemmerling
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | | | - Karl Edman
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Stefan Eirefelt
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | - Wayne Russell
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | - Ramon Hendrickx
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Eskil Johnsson
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Carina Kärrman Mårdh
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Markus Berger
- Medicinal Chemistry Berlin, Drug Discovery, Pharmaceuticals, Bayer AG , Berlin 13353, Germany
| | - Hartmut Rehwinkel
- Medicinal Chemistry Berlin, Drug Discovery, Pharmaceuticals, Bayer AG , Berlin 13353, Germany
| | - Anna Abrahamsson
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Jan Dahmén
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | - Anders R Eriksson
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Balint Gabos
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | | | - Nafizal Hossain
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | | | | | - Tina J Jensen
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Anders Jerre
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | | | | | - Matti Lepistö
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Martin Lindsjö
- Pharmaceutical Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Irene Mile
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | | | - John Steele
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Ulrika Tehler
- Pharmaceutical Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Lisa Wissler
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Thomas Hansson
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| |
Collapse
|
16
|
A high-throughput chemical screen identifies novel inhibitors and enhancers of anti-inflammatory functions of the glucocorticoid receptor. Sci Rep 2017; 7:7405. [PMID: 28785063 PMCID: PMC5547123 DOI: 10.1038/s41598-017-07565-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/28/2017] [Indexed: 02/05/2023] Open
Abstract
Glucocorticoids (GCs)—ligands of the glucocorticoid receptor (GR)—are widely used to treat inflammatory diseases, but suffer from significant side effects and poor responsiveness in certain patient populations. Identification of chemical GR modulators may provide insights into the regulatory mechanisms of anti-inflammatory functions of GR and help improve GC-based therapy. Here we report the development and application of a high-throughput screening to identify compounds that either enhance or suppress the anti-inflammatory effect of GR function. Using a cell-based GR activity assay that measures Dexamethasone (Dex)-mediated NF-κB repression, we have screened ~8,000 compounds and identified several compounds that suppressed GR activity, including multiple GSK3β inhibitors and anti-cancer agent camptothecin. Notably, we also identified two kinase IKK2 inhibitors, including TPCA-1, as GR enhancers that improve the anti-inflammatory effect of GR. In particular, TPCA-1 augmented the activity of Dex in NF-κB repression by attenuating GR down-regulation. Consistent with the observation, siRNA-mediated IKK2 knockdown decreased GR down-regulation and increased GR expression. Together, our results identified chemical compounds as novel modulators of GR and revealed an unexpected role for IKK2 in GR down-regulation. Furthermore, we have established a high-throughput screening platform for discovering GR-modulating compounds that may be repurposed to improve current GC-based therapies.
Collapse
|
17
|
Kuna P, Aurivillius M, Jorup C, Prothon S, Taib Z, Edsbäcker S. Efficacy and Tolerability of an Inhaled Selective Glucocorticoid Receptor Modulator - AZD5423 - in Chronic Obstructive Pulmonary Disease Patients: Phase II Study Results. Basic Clin Pharmacol Toxicol 2017; 121:279-289. [PMID: 28212463 DOI: 10.1111/bcpt.12768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/13/2017] [Indexed: 11/28/2022]
Abstract
AZD5423 is a novel, inhaled, selective glucocorticoid receptor modulator (SGRM), which in an allergen challenge model in asthma patients improved lung function and airway hyper-reactivity. In the current trial, AZD5423 was for the first time tested in patients with chronic obstructive pulmonary disease (COPD). In this double-blind, randomized and parallel group study, we examined airway and systemic effects of two doses of AZD5423, inhaled via Turbuhaler for 12 weeks, in 353 symptomatic patients with COPD (average pre-bronchodilator forced expiratory volume in one-second (FEV1) at screening was 50-52% of predicted normal). Pre-bronchodilator FEV1 was primary variable, with other lung function parameters plus symptoms and 24-hr plasma cortisol being secondary variables. Plasma concentrations of AZD5423 were also measured. Effects were compared against placebo and a reference glucocorticoid receptor agonist control. Neither AZD5423, at doses which have shown to be efficacious in allergen-induced asthma, nor the reference control, at double the approved dose, had any clinically meaningful effect in the patient population studied in regard to lung function or markers of inflammation. Both GR modulators were well tolerated and did suppress 24-hr cortisol. This study suggests that the selected population of patients with COPD does not respond to treatment with AZD5423 as regards lung function, while showing the expected systemic effects. It cannot be ruled out that a favourable lung function response of AZD5423 can be evoked using another experimental setting and/or within a different population of patients with COPD.
Collapse
Affiliation(s)
- Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | | | - Carin Jorup
- AstraZeneca Global Medicines Development, Gothenburg, Sweden
| | | | - Ziad Taib
- AstraZeneca Early Clinical Development, Gothenburg, Sweden
| | - Staffan Edsbäcker
- Department of Clinical and Experimental Pharmacology, Laboratory Medicines Unit, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Hemmerling M, Edman K, Lepistö M, Eriksson A, Ivanova S, Dahmén J, Rehwinkel H, Berger M, Hendrickx R, Dearman M, Jensen TJ, Wissler L, Hansson T. Discovery of indazole ethers as novel, potent, non-steroidal glucocorticoid receptor modulators. Bioorg Med Chem Lett 2016; 26:5741-5748. [DOI: 10.1016/j.bmcl.2016.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 11/28/2022]
|
19
|
Gómez AB, Cortés González MA, Lübcke M, Johansson MJ, Halldin C, Szabó KJ, Schou M. Efficient DBU accelerated synthesis of 18F-labelled trifluoroacetamides. Chem Commun (Camb) 2016; 52:13963-13966. [PMID: 27844069 DOI: 10.1039/c6cc08535k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nucleophilic 18F-fluorination of bromodifluoromethyl derivatives was performed using [18F]Bu4NF in the presence of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene). This novel procedure provided a diverse set of [18F]trifluoroacetamides in good to excellent radiochemical conversions. A mechanism where DBU acts as organomediator in this transformation is proposed.
Collapse
Affiliation(s)
- Antonio Bermejo Gómez
- AstraZeneca Personalised Healthcare and Biomarkers, PET Centre at Karolinska Institutet, Karolinska Universitetssjukhuset Solna, R5:02, SE-171 76 Stockholm, Sweden. and Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, SE-106 91 Stockholm, Sweden and Stockholm Brain Institute, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Miguel A Cortés González
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, SE-106 91 Stockholm, Sweden and Stockholm Brain Institute, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Marvin Lübcke
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, SE-106 91 Stockholm, Sweden and Stockholm Brain Institute, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus J Johansson
- CVMD iMed, Medicinal Chemistry AstraZeneca R&D, Mölndal, SE-431 83, Sweden
| | - Christer Halldin
- Stockholm Brain Institute, Karolinska Institutet, SE-171 77 Stockholm, Sweden and Department of Clinical Neuroscience, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Kálmán J Szabó
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, SE-106 91 Stockholm, Sweden and Stockholm Brain Institute, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Schou
- AstraZeneca Personalised Healthcare and Biomarkers, PET Centre at Karolinska Institutet, Karolinska Universitetssjukhuset Solna, R5:02, SE-171 76 Stockholm, Sweden. and Stockholm Brain Institute, Karolinska Institutet, SE-171 77 Stockholm, Sweden and Department of Clinical Neuroscience, Karolinska Institutet, S-17176 Stockholm, Sweden
| |
Collapse
|
20
|
Newton R, Giembycz MA. Understanding how long-acting β 2 -adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids in asthma - an update. Br J Pharmacol 2016; 173:3405-3430. [PMID: 27646470 DOI: 10.1111/bph.13628] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022] Open
Abstract
In moderate-to-severe asthma, adding an inhaled long-acting β2 -adenoceptor agonist (LABA) to an inhaled corticosteroid (ICS) provides better disease control than simply increasing the dose of ICS. Acting on the glucocorticoid receptor (GR, gene NR3C1), ICSs promote anti-inflammatory/anti-asthma gene expression. In vitro, LABAs synergistically enhance the maximal expression of many glucocorticoid-induced genes. Other genes, including dual-specificity phosphatase 1(DUSP1) in human airways smooth muscle (ASM) and epithelial cells, are up-regulated additively by both drug classes. Synergy may also occur for LABA-induced genes, as illustrated by the bronchoprotective gene, regulator of G-protein signalling 2 (RGS2) in ASM. Such effects cannot be produced by either drug alone and may explain the therapeutic efficacy of ICS/LABA combination therapies. While the molecular basis of synergy remains unclear, mechanistic interpretations must accommodate gene-specific regulation. We explore the concept that each glucocorticoid-induced gene is an independent signal transducer optimally activated by a specific, ligand-directed, GR conformation. In addition to explaining partial agonism, this realization provides opportunities to identify novel GR ligands that exhibit gene expression bias. Translating this into improved therapeutic ratios requires consideration of GR density in target tissues and further understanding of gene function. Similarly, the ability of a LABA to interact with a glucocorticoid may be suboptimal due to low β2 -adrenoceptor density or biased β2 -adrenoceptor signalling. Strategies to overcome these limitations include adding-on a phosphodiesterase inhibitor and using agonists of other Gs-coupled receptors. In all cases, the rational design of ICS/LABA, and derivative, combination therapies requires functional knowledge of induced (and repressed) genes for therapeutic benefit to be maximized.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Werkström V, Prothon S, Ekholm E, Jorup C, Edsbäcker S. Safety, Pharmacokinetics and Pharmacodynamics of the Selective Glucocorticoid Receptor Modulator AZD5423 after Inhalation in Healthy Volunteers. Basic Clin Pharmacol Toxicol 2016; 119:574-581. [PMID: 27214145 DOI: 10.1111/bcpt.12621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/09/2016] [Indexed: 01/02/2023]
Abstract
AZD5423 is a selective glucocorticosteroid receptor modulator developed for the inhaled use in asthma and COPD. This study reports the initial, first-in-man, single and repeat dose-escalating studies in healthy male individuals, including one cohort of male Japanese individuals. Inhaled, nebulized AZD5423 was safe and well tolerated up to and including the highest doses tested for up to 2 weeks of once-daily treatment. Plasma exposure suggested dose-proportional pharmacokinetics and dose-related effects on 24-hr plasma and urine cortisol. There were no or marginal effects on other biomarkers tested (osteocalcin, TRAP5b, DHEA-S and 4β-OH-cholesterol). No clinically relevant differences in safety or pharmacokinetics could be distinguished between the two study populations, although hypothalamus-pituitary-adrenal (HPA) effects appeared to be marginally greater in the Japanese- versus the Caucasian-dominant study population. AZD5423, inhaled via nebulization, can be used in healthy individuals at doses of at least 300 μg for 2 weeks. The effects on the HPA axis reported herein, together with efficacy data reported elsewhere, indicate that benefit-risk ratio may be improved relative to conventional inhaled steroids.
Collapse
Affiliation(s)
| | - Susanne Prothon
- AstraZeneca Global Medicines Development, Gothenburg, Sweden
| | - Ella Ekholm
- AstraZeneca Global Medicines Development, Gothenburg, Sweden
| | - Carin Jorup
- AstraZeneca Global Medicines Development, Gothenburg, Sweden
| | - Staffan Edsbäcker
- Department of Clinical and Experimental Pharmacology, Laboratory Medicines Unit, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Cazzola M, Coppola A, Rogliani P, Matera MG. Novel glucocorticoid receptor agonists in the treatment of asthma. Expert Opin Investig Drugs 2015; 24:1473-82. [PMID: 26293110 DOI: 10.1517/13543784.2015.1078310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Inhaled corticosteroids are the only drugs that effectively suppress the airway inflammation, but they can induce considerable systemic and adverse effects when they are administered chronically at high doses. Consequently, the pharmaceutical industry is still searching for newer entities with an improved therapeutic index. AREAS COVERED Herein, the authors review the research in the glucocorticoid field to identify ligands of the glucocorticoid receptor (GR). These ligands preferentially induce transrepression with little or no transactivating activity, in order to have a potent anti-inflammatory action and a low side-effects profile. EXPERT OPINION Several agents have been synthesized, but few have been tested in experimental models of asthma. Furthermore, only three (BI-54903, GW870086X and AZD5423) have entered clinical development, although the development of at least one of them (BI-54903) was discontinued. The reason for the limited success so far obtained is that the model of transactivation versus transrepression is a too simplistic representation of GR activity. It is difficult to uncouple the therapeutic and harmful effects mediated by GR, but some useful information that might change the current perspective is appearing in the literature. The generation of gene expression 'fingerprints' produced by different GR agonists in target and off-target human tissues could be useful in identifying drug candidates with an improved therapeutic ratio.
Collapse
Affiliation(s)
- Mario Cazzola
- a 1 University of Rome Tor Vergata, Department of Systems Medicine , Rome, Italy.,b 2 University of Rome Tor Vergata, Respiratory Pharmacology Research Unit, Department of Systems Medicine , Rome, Italy .,c 3 University Hospital Tor Vergata, Division of Respiratory Medicine , Rome, Italy
| | - Angelo Coppola
- a 1 University of Rome Tor Vergata, Department of Systems Medicine , Rome, Italy.,c 3 University Hospital Tor Vergata, Division of Respiratory Medicine , Rome, Italy
| | - Paola Rogliani
- a 1 University of Rome Tor Vergata, Department of Systems Medicine , Rome, Italy.,c 3 University Hospital Tor Vergata, Division of Respiratory Medicine , Rome, Italy
| | - Maria Gabriella Matera
- d 4 Second University of Naples, Unit of Pharmacology, Department of Experimental Medicine , Naples, Italy
| |
Collapse
|
23
|
Liu YL, Jang S, Wang SM, Chen CH, Li FY. Investigation on critical structural motifs of ligands for triggering glucocorticoid receptor nuclear migration through molecular docking simulations. J Biomol Struct Dyn 2015. [DOI: 10.1080/07391102.2015.1074113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Luz JG, Carson MW, Condon B, Clawson D, Pustilnik A, Kohlman DT, Barr RJ, Bean JS, Dill MJ, Sindelar DK, Maletic M, Coghlan MJ. Indole Glucocorticoid Receptor Antagonists Active in a Model of Dyslipidemia Act via a Unique Association with an Agonist Binding Site. J Med Chem 2015. [PMID: 26218343 DOI: 10.1021/acs.jmedchem.5b00736] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To further elucidate the structural activity correlation of glucocorticoid receptor (GR) antagonism, the crystal structure of the GR ligand-binding domain (GR LBD) complex with a nonsteroidal antagonist, compound 8, was determined. This novel indole sulfonamide shows in vitro activity comparable to known GR antagonists such as mifepristone, and notably, this molecule lowers LDL (-74%) and raises HDL (+73%) in a hamster model of dyslipidemia. This is the first reported crystal structure of the GR LBD bound to a nonsteroidal antagonist, and this article provides additional elements for the design and pharmacology of clinically relevant nonsteroidal GR antagonists that may have greater selectivity and fewer side effects than their steroidal counterparts.
Collapse
Affiliation(s)
- John G Luz
- Eli Lilly Biotechnology Center , 10300 Campus Point Drive, Suite 200, San Diego, California 92121 United States
| | - Matthew W Carson
- Lilly Research Laboratories, A Division of Eli Lilly & Co. , Lilly Corporate Center, Indianapolis, Indiana 46285 United States
| | - Bradley Condon
- Eli Lilly Biotechnology Center , 10300 Campus Point Drive, Suite 200, San Diego, California 92121 United States
| | - David Clawson
- Lilly Research Laboratories, A Division of Eli Lilly & Co. , Lilly Corporate Center, Indianapolis, Indiana 46285 United States
| | - Anna Pustilnik
- Eli Lilly Biotechnology Center , 10300 Campus Point Drive, Suite 200, San Diego, California 92121 United States
| | - Daniel T Kohlman
- Lilly Research Laboratories, A Division of Eli Lilly & Co. , Lilly Corporate Center, Indianapolis, Indiana 46285 United States
| | - Robert J Barr
- Lilly Research Laboratories, A Division of Eli Lilly & Co. , Lilly Corporate Center, Indianapolis, Indiana 46285 United States
| | - James S Bean
- Lilly Research Laboratories, A Division of Eli Lilly & Co. , Lilly Corporate Center, Indianapolis, Indiana 46285 United States
| | - M Joelle Dill
- Lilly Research Laboratories, A Division of Eli Lilly & Co. , Lilly Corporate Center, Indianapolis, Indiana 46285 United States
| | - Dana K Sindelar
- Lilly Research Laboratories, A Division of Eli Lilly & Co. , Lilly Corporate Center, Indianapolis, Indiana 46285 United States
| | - Milan Maletic
- Eli Lilly Biotechnology Center , 10300 Campus Point Drive, Suite 200, San Diego, California 92121 United States
| | - Michael J Coghlan
- Lilly Research Laboratories, A Division of Eli Lilly & Co. , Lilly Corporate Center, Indianapolis, Indiana 46285 United States
| |
Collapse
|
25
|
Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM. Selective glucocorticoid receptor modulation: New directions with non-steroidal scaffolds. Pharmacol Ther 2015; 152:28-41. [PMID: 25958032 DOI: 10.1016/j.pharmthera.2015.05.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Glucocorticoids remain the frontline treatment for inflammatory disorders, yet represent a double-edged sword with beneficial therapeutic actions alongside adverse effects, mainly in metabolic regulation. Considerable efforts were made to improve this balance by attempting to amplify therapeutic beneficial anti-inflammatory actions and to minimize adverse metabolic actions. Most attention has focused on the development of novel compounds favoring the transrepressing actions of the glucocorticoid receptor, assumed to be important for anti-inflammatory actions, over the transactivating actions, assumed to underpin the undesirable actions. These compounds are classified as selective glucocorticoid receptor agonists (SEGRAs) or selective glucocorticoid receptor modulators (SEGRMs). The latter class is able to modulate the activity of a GR agonist and/or may not classically bind the glucocorticoid receptor ligand-binding pocket. SEGRAs and SEGRMs are collectively denominated SEGRAMs (selective glucocorticoid receptor agonists and modulators). Although this transrepression vs transactivation concept proved to be too simplistic, the developed SEGRAMs were helpful in elucidating various molecular actions of the glucocorticoid receptor, but have also raised many novel questions. We discuss lessons learned from recent mechanistic studies of selective glucocorticoid receptor modulators. This is approached by analyzing recent experimental insights in comparison with knowledge obtained using mutant GR research, thus clarifying the current view on the SEGRAM field. These insights also contribute to our understanding of the processes controlling glucocorticoid-mediated side effects as well as glucocorticoid resistance. Our perspective on non-steroidal SEGRAs and SEGRMs considers remaining opportunities to address research gaps in order to harness the potential for more safe and effective glucocorticoid receptor therapies.
Collapse
Affiliation(s)
- Nora Sundahl
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Jolien Bridelance
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Claude Libert
- Department for Molecular Biomedical Research, VIB, Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL), VIB Department of Medical Protein Research, Ghent University, Gent, Belgium.
| | - Ilse M Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| |
Collapse
|
26
|
Gauvreau GM, Boulet LP, Leigh R, Cockcroft DW, Killian KJ, Davis BE, Deschesnes F, Watson RM, Swystun V, Mårdh CK, Wessman P, Jorup C, Aurivillius M, O'Byrne PM. A nonsteroidal glucocorticoid receptor agonist inhibits allergen-induced late asthmatic responses. Am J Respir Crit Care Med 2015; 191:161-7. [PMID: 25473939 DOI: 10.1164/rccm.201404-0623oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Effective antiinflammatory therapies are needed for the treatment of asthma, but preferably without the systemic adverse effects of glucocorticosteroids. OBJECTIVES We evaluated the effect of an inhaled nonsteroidal glucocorticoid receptor agonist, AZD5423, on allergen-induced responses. METHODS Twenty subjects with mild allergic asthma were randomized to receive 7 days of treatment with nebulized AZD5423 (75 or 300 μg) once daily, budesonide 200 μg twice daily via Turbuhaler, or placebo in a double-blind, four-period, crossover design study. Allergen challenge was performed on Day 6. MEASUREMENTS AND MAIN RESULTS FEV1 was measured repeatedly for 7 hours after allergen challenge for early and late asthmatic responses. Sputum inflammatory cells was measured before and at 7 and 24 hours after allergen challenge, and methacholine airway responsiveness was measured before and 24 hours after allergen challenge. AZD5423 significantly attenuated the fall in FEV1 during the late asthmatic response (both doses led to an 8.7% fall) versus placebo (14% fall) (P < 0.05) with no effect of budesonide (12.5% fall) versus placebo (P > 0.05). There was no effect on the fall in FEV1 during early asthmatic response. AZD5423 300 and 75 μg significantly attenuated allergen-induced sputum eosinophilia by 63 and 61% at 7 hours, respectively, and by 46 and 34% at 24 hours after allergen challenge, respectively, versus placebo (all P < 0.05). Budesonide did not reduce allergen-induced sputum eosinophilia versus placebo. AZD5423 at 300 μg significantly attenuated allergen-induced airway hyperresponsiveness at 24 hours after allergen challenge versus placebo (P < 0.05). Both doses of AZD5423 were well tolerated. CONCLUSIONS Seven-day treatment with inhalation of the nonsteroidal glucocorticoid receptor agonist AZD5423 effectively reduced allergen-induced responses in subjects with mild allergic asthma. Clinical trial registered with www.clinicaltrials.gov (NCT01225549).
Collapse
Affiliation(s)
- Gail M Gauvreau
- 1 Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schoch GA, Sammito M, Millán C, Usón I, Rudolph MG. Structure of a 13-fold superhelix (almost) determined from first principles. IUCRJ 2015; 2:177-87. [PMID: 25866655 PMCID: PMC4392412 DOI: 10.1107/s2052252515000238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Nuclear hormone receptors are cytoplasm-based transcription factors that bind a ligand, translate to the nucleus and initiate gene transcription in complex with a co-activator such as TIF2 (transcriptional intermediary factor 2). For structural studies the co-activator is usually mimicked by a peptide of circa 13 residues, which for the largest part forms an α-helix when bound to the receptor. The aim was to co-crystallize the glucocorticoid receptor in complex with a ligand and the TIF2 co-activator peptide. The 1.82 Å resolution diffraction data obtained from the crystal could not be phased by molecular replacement using the known receptor structures. HPLC analysis of the crystals revealed the absence of the receptor and indicated that only the co-activator peptide was present. The self-rotation function displayed 13-fold rotational symmetry, which initiated an exhaustive but unsuccessful molecular-replacement approach using motifs of 13-fold symmetry such as α- and β-barrels in various geometries. The structure was ultimately determined by using a single α-helix and the software ARCIMBOLDO, which assembles fragments placed by PHASER before using them as seeds for density modification model building in SHELXE. Systematic variation of the helix length revealed upper and lower size limits for successful structure determination. A beautiful but unanticipated structure was obtained that forms superhelices with left-handed twist throughout the crystal, stabilized by ligand interactions. Together with the increasing diversity of structural elements in the Protein Data Bank the results from TIF2 confirm the potential of fragment-based molecular replacement to significantly accelerate the phasing step for native diffraction data at around 2 Å resolution.
Collapse
Affiliation(s)
- Guillaume A. Schoch
- Molecular Design and Chemical Biology, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Massimo Sammito
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, Barcelona Science Park, Baldiri Reixach 15, 08028 Barcelona, Spain
| | - Claudia Millán
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, Barcelona Science Park, Baldiri Reixach 15, 08028 Barcelona, Spain
| | - Isabel Usón
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, Barcelona Science Park, Baldiri Reixach 15, 08028 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys, 23, 08010 Barcelona, Spain
| | - Markus G. Rudolph
- Molecular Design and Chemical Biology, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
28
|
Boger E, Ewing P, Eriksson UG, Fihn BM, Chappell M, Evans N, Fridén M. A Novel In Vivo Receptor Occupancy Methodology for the Glucocorticoid Receptor: Toward An Improved Understanding of Lung Pharmacokinetic/Pharmacodynamic Relationships. J Pharmacol Exp Ther 2015; 353:279-87. [DOI: 10.1124/jpet.114.221226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|