1
|
Molecular biology exploration and targeted therapy strategy of Ameloblastoma. Arch Oral Biol 2022; 140:105454. [DOI: 10.1016/j.archoralbio.2022.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
|
2
|
Huang L, Zhai E, Cai S, Lin Y, Liao J, Jin H, Peng S, Xu L, Chen M, Zeng Z. Stress-inducible Protein-1 promotes metastasis of gastric cancer via Wnt/β-catenin signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:6. [PMID: 29335007 PMCID: PMC5769340 DOI: 10.1186/s13046-018-0676-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/07/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stress-Inducible Protein-1 (STIP1) is a co-chaperone that associates directly with heat shock proteins, and regulates motility of various types of cancer. In the present study, we investigated the role of STIP1 on metastasis of gastric cancer (GC). METHODS In vivo metastatic experimental model was employed to investigate the effect of STIP1 on metastasis of GC cells. Loss-of-function and gain-of-function experiments were performed to examine the role of STIP1 on metastasis of GC cells. Western blot, immunofluorescence staining, migration and invasion assays, microarray and KEGG pathway analysis were applied to explore the underlying mechanism. RESULTS In current study, we demonstrated that STIP1 promoted lung metastasis of GC cells in vivo. Furthermore, STIP1 significantly enhanced migration and invasion abilities of GC cells. In contrast, knock-down of STIP1 yielded the opposite effects on these phenotypes in vitro. STIP1 promoted tumor metastasis through inducing epithelial-to-mesenchymal transition in GC cells. Mechanistically, STIP1 promoted GC metastasis via up-regulation of targeted genes in Wnt/β-catenin signaling pathway, including c-Myc and Cyclin D1, and accompanied with nuclear translocation of β-catenin. CONCLUSIONS Our findings indicate that elevated expression of STIP1 exhibited a metastasis-promoting effect in GC cells through activation of Wnt/β-catenin signaling pathway. STIP1 may be served as a potential therapeutic target for preventing GC metastasis.
Collapse
Affiliation(s)
- Linlin Huang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ertao Zhai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, SunYat-sen University, Guangzhou, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, SunYat-sen University, Guangzhou, China
| | - Yi Lin
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.,Department of Gastroenterology and Hepatology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Junbin Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huilin Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sui Peng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Lixia Xu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Naskar P, Puri N. Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis. Biol Open 2017; 6:1257-1269. [PMID: 28784843 PMCID: PMC5612236 DOI: 10.1242/bio.025791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Upon allergen challenge, mast cells (MCs) respond by releasing pre-stored mediators from their secretory granules by the transient mechanism of porosome-mediated cell secretion. The target SNARE SNAP-23 has been shown to be important for MC exocytosis, and our previous studies revealed the presence of one basal (Thr102) and two induced (Ser95 and Ser120) phosphorylation sites in its linker region. To study the role of SNAP-23 phosphorylation in the regulation of exocytosis, green fluorescence protein-tagged wild-type SNAP-23 (GFP-SNAP-23) and its phosphorylation mutants were transfected into rat basophilic leukemia (RBL-2H3) MCs. Studies on GFP-SNAP-23 transfected MCs revealed some dynamic changes in SNAP-23 membrane association. SNAP-23 was associated with plasma membrane in resting MCs, however, on activation a portion of it translocated to cytosol and internal membranes. These internal locations were secretory granule membranes. This dynamic change in the membrane association of SNAP-23 in MCs may be important for mediating internal granule-granule fusions in compound exocytosis. Further studies with SNAP-23 phosphorylation mutants revealed an important role for the phosphorylation at Thr102 in its initial membrane association, and of induced phosphorylation at Ser95 and Ser120 in its internal membrane association, during MC exocytosis. Summary: The current study has revealed the phosphorylation-dependent dynamic nature of membrane association of SNAP-23 for mediation of different fusion steps in compound exocytosis from mast cells during allergen challenge.
Collapse
Affiliation(s)
- Pieu Naskar
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Niti Puri
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Argenta DF, Silva IT, Bassani VL, Koester LS, Teixeira HF, Simões CMO. Antiherpes evaluation of soybean isoflavonoids. Arch Virol 2015; 160:2335-42. [PMID: 26156104 DOI: 10.1007/s00705-015-2514-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/25/2015] [Indexed: 01/22/2023]
Abstract
The antiviral effects of soybean isoflavonoids have been investigated recently, especially those of genistein. It has been reported that this isoflavone is able to inhibit herpes simplex virus (HSV) replication, which is associated with skin and epithelial mucosa infections. The treatment of these infections with antiherpes drugs has resulted in the emergence of resistant viral strains. Based on this evidence, the aim of this study was to investigate the anti-HSV effects of soybean isoflavonoids: daidzein, genistein, glycitein, and coumestrol. Genistein and coumestrol inhibited HSV-1 (KOS and 29R strains, which are acyclovir sensitive and acyclovir resistant, respectively) and HSV-2 (333 strain) replication, whereas no antiviral effects were detected for daidzein and glycitein. The mechanisms of action were evaluated by different methodological strategies. Coumestrol affected the early stages of viral infection, and both compounds were able to reduce HSV-1 protein expression, as well as HSV-2 cell-to-cell spread.
Collapse
Affiliation(s)
- D F Argenta
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | | | | | | | | | | |
Collapse
|