1
|
Sharma K, Sharma KK, Mahindra A, Sehra N, Bagra N, Aaghaz S, Parmar R, Rathod GK, Jain R. Design, synthesis, and applications of ring-functionalized histidines in peptide-based medicinal chemistry and drug discovery. Med Res Rev 2023. [PMID: 36710510 DOI: 10.1002/med.21936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Modified and synthetic α-amino acids are known to show diverse applications. Histidine, which possesses numerous applications when subjected to synthetic modifications, is one such amino acid. The utility of modified histidines varies widely from remarkable biological activities to catalysis, and from nanotechnology to polymer chemistry. This renders histidine residue an important place in scientific research. Histidine is a well-studied scaffold and constitutes the active site of various enzymes catalyzing important reactions in the biological systems. A rational modification in histidine structure with a distinctly developed protocol extensively changes its physical and chemical properties. The utilization of modified histidines in search of potent, target selective and proteostable scaffolds is vital in the development of bioactive peptides with enhanced drug-likeliness. This review is a compilation and analysis of reported side-chain ring modifications at histidine followed by applications of ring-modified histidines in the synthesis of various categories of bioactive peptides and peptidomimetics.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Amit Mahindra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Nitin Bagra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| |
Collapse
|
2
|
Aaghaz S, Sharma K, Maurya IK, Rudramurthy SM, Singh S, Kumar V, Tikoo K, Jain R. Anticryptococcal activity and mechanistic studies of short amphipathic peptides. Arch Pharm (Weinheim) 2023; 356:e2200576. [PMID: 36592413 DOI: 10.1002/ardp.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023]
Abstract
Cryptococcus neoformans, an opportunistic fungal pathogen, causes cryptococcosis in immunocompromised persons. A series of modified L-histidines-containing peptides are synthesized that exhibit promising activity against C. neoformans. Analog 11d [L-His(2-adamantyl)-L-Trp-L-His(2-phenyl)-OMe] produced potency with an IC50 of 3.02 µg/ml (MIC = 5.49 µg/ml). This peptide is noncytotoxic and nonhaemolytic at the MIC and displays synergistic effects with amphotericin B at subinhibitory concentration. Mechanistic investigation of 11d using microscopic tools indicates cell wall and membrane disruption of C. neoformans, while flow cytometric analysis confirms cell death by apoptosis. This study indicates that 11d exhibits antifungal potential and acts via the rapid onset of action.
Collapse
Affiliation(s)
- Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Indresh K Maurya
- Center for Infectious Diseases, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Shreya Singh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India.,Center for Infectious Diseases, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| |
Collapse
|
3
|
Sharma K, Aaghaz S, Maurya IK, Singh S, Rudramurthy SM, Kumar V, Tikoo K, Jain R. Ring-Modified Histidine-Containing Cationic Short Peptides Exhibit Anticryptococcal Activity by Cellular Disruption. Molecules 2022; 28:molecules28010087. [PMID: 36615282 PMCID: PMC9821961 DOI: 10.3390/molecules28010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Delineation of clinical complications secondary to fungal infections, such as cryptococcal meningitis, and the concurrent emergence of multidrug resistance in large population subsets necessitates the need for the development of new classes of antifungals. Herein, we report a series of ring-modified histidine-containing short cationic peptides exhibiting anticryptococcal activity via membrane lysis. The N-1 position of histidine was benzylated, followed by iodination at the C-5 position via electrophilic iodination, and the dipeptides were obtained after coupling with tryptophan. In vitro analysis revealed that peptides Trp-His[1-(3,5-di-tert-butylbenzyl)-5-iodo]-OMe (10d, IC50 = 2.20 μg/mL; MIC = 4.01 μg/mL) and Trp-His[1-(2-iodophenyl)-5-iodo)]-OMe (10o, IC50 = 2.52 μg/mL; MIC = 4.59 μg/mL) exhibit promising antifungal activities against C. neoformans. When administered in combination with standard drug amphotericin B (Amp B), a significant synergism was observed, with 4- to 16-fold increase in the potencies of both peptides and Amp B. Electron microscopy analysis with SEM and TEM showed that the dipeptides primarily act via membrane disruption, leading to pore formation and causing cell lysis. After entering the cells, the peptides interact with the intracellular components as demonstrated by confocal laser scanning microscopy (CLSM).
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Indresh Kumar Maurya
- Center of Infectious Diseases, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Shreya Singh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160 012, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160 012, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
- Correspondence:
| |
Collapse
|
4
|
Sharma K, Aaghaz S, Kumar Maurya I, Sharma KK, Singh S, Rudramurthy SM, Kumar V, Tikoo K, Jain R. Synthetic Amino Acids-Derived Peptides Targets Cryptococcus neoformans by Inducing Cell Membrane Disruption. Bioorg Chem 2022; 130:106252. [DOI: 10.1016/j.bioorg.2022.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
5
|
Sharma K, Aaghaz S, Maurya IK, Rudramurthy SM, Singh S, Kumar V, Tikoo K, Jain R. Antifungal evaluation and mechanistic investigations of membrane active short synthetic peptides-based amphiphiles. Bioorg Chem 2022; 127:106002. [DOI: 10.1016/j.bioorg.2022.106002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022]
|
6
|
Synthesis of 5‐Alkynyl and 2,5‐Dialkynyl‐L‐histidines. ChemistrySelect 2022. [DOI: 10.1002/slct.202200264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
β-Carbolines as potential anticancer agents. Eur J Med Chem 2021; 216:113321. [PMID: 33684825 DOI: 10.1016/j.ejmech.2021.113321] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 01/18/2023]
Abstract
β-Carbolines are indole alkaloids having a tricyclic pyrido[3,4-b]indole ring in their structure. Since the isolation of first β-carboline from Peganum harmala in 1841, the isolation and synthesis of various β-carboline derivatives surged in the following centuries. β-Carboline derivatives due to their widespread availability from natural sources, structural flexibility, quick reactivity and interaction with varied anticancer targets such as DNA (intercalation, groove binding, etc.), enzymes (GPX4, topoisomerases, kinases, etc.) and proteins (tubulin, ABCG2/BRCP1, etc.) have established themselves as promising lead compounds for the synthesis of various anticancer active agents. The current review covers the synthesis and isolation, anticancer activity, mechanism of action and SAR of various β-carboline containing molecules, its derivatives and congeners.
Collapse
|
8
|
Sharma D, Bisht GS. Recent Updates on Antifungal Peptides. Mini Rev Med Chem 2020; 20:260-268. [PMID: 31556857 DOI: 10.2174/1389557519666190926112423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/17/2018] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
The current trend of increment in the frequency of antifungal resistance has brought research into an era where new antifungal compounds with novel mechanisms of action are required. Natural antimicrobial peptides, which are ubiquitous components of innate immunity, represent their candidature for novel antifungal peptides. Various antifungal peptides have been isolated from different species ranging from small marine organisms to insects and from various other living species. Based on these peptides, various mimetics of antifungal peptides have also been synthesized using non-natural amino acids. Utilization of these antifungal peptides is somehow limited due to their toxic and unstable nature. This review discusses recent updates and future directions of antifungal peptides, for taking them to the shelf from the bench.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Gopal Singh Bisht
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| |
Collapse
|
9
|
Sharma KK, Maurya IK, Khan SI, Jacob MR, Kumar V, Tikoo K, Jain R. Discovery of a Membrane-Active, Ring-Modified Histidine Containing Ultrashort Amphiphilic Peptide That Exhibits Potent Inhibition of Cryptococcus neoformans. J Med Chem 2017; 60:6607-6621. [DOI: 10.1021/acs.jmedchem.7b00481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Krishna K. Sharma
- Department
of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Indresh Kumar Maurya
- Department
of Microbial Biotechnology, Panjab University, Sector 25, Chandigarh, 160 014, India
| | - Shabana I. Khan
- National
Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Melissa R. Jacob
- National
Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Vinod Kumar
- Department
of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Kulbhushan Tikoo
- Department
of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department
of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| |
Collapse
|
10
|
Shenmar K, Sharma KK, Wangoo N, Maurya IK, Kumar V, Khan SI, Jacob MR, Tikoo K, Jain R. Synthesis, stability and mechanistic studies of potent anticryptococcal hexapeptides. Eur J Med Chem 2017; 132:192-203. [PMID: 28363154 DOI: 10.1016/j.ejmech.2017.03.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/14/2017] [Accepted: 03/22/2017] [Indexed: 01/04/2023]
Abstract
The growing incidents of cryptococcosis in immuno-compromised patients have created a need for novel drug therapies capable of eradicating the disease. The peptide-based drug therapy offers many advantages over the traditional therapeutic agents, which has been exploited in the present study by synthesizing a series of hexapeptides that exhibits promising activity against a panel of Gram-negative and Gram-positive bacteria and various pathogenic fungal strains; the most exemplary activity was observed against Cryptococcus neoformans. The peptides 3, 24, 32 and 36 displayed potent anticryptococcal activity (IC50 = 0.4-0.46 μg/mL, MIC = 0.63-1.25 μg/mL, MFC = 0.63-1.25 μg/mL), and stability under proteolytic conditions. Besides this, several other peptides displayed promising inhibition of pathogenic bacteria. The prominent ones include peptides 18-20, and 26 that exhibited IC50 values ranged between 2.1 and 3.6 μg/mL, MICs of 5-20 μg/mL and MBCs of 10-20 μg/mL against Staphylococcus aureus and methicillin-resistant S. aureus. The detailed mechanistic study on selected peptides demonstrated absolute selectivity towards the bacterial membranes and fungal cells by causing perturbations in the cell membranes, confirmed by the scanning electron microscopy and transmission electron microscopy studies.
Collapse
Affiliation(s)
- Kitika Shenmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering and Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh, 160014, India
| | - Indresh K Maurya
- Department of Microbial Biotechnology, Panjab University, Sector-14, Chandigarh, 160014, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Melissa R Jacob
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
11
|
Lohan S, Monga J, Chauhan CS, Bisht GS. In Vitro and In Vivo Evaluation of Small Cationic Abiotic Lipopeptides as Novel Antifungal Agents. Chem Biol Drug Des 2015; 86:829-36. [PMID: 25777475 DOI: 10.1111/cbdd.12558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/24/2015] [Accepted: 03/10/2015] [Indexed: 12/01/2022]
Abstract
We investigated the antifungal potential of short lipopeptides against clinical fungal isolates with an objective to evaluate their clinical feasibility. All tested lipopeptides exhibit good antifungal activity with negligible difference between the MICs against susceptible and drug-resistant clinical fungal isolates. The MTT assay results revealed the lower cytotoxicity of lipopeptides toward mammalian cells (NRK-52E). In particular, LP24 displayed highest potency against most of the tested fungal isolates with MICs in the range of 1.5-4.5 μg/mL. Calcein dye leakage experiments with model membrane suggested the membrane-active mode of action for LP24. Extending our work from model membranes to intact Aspergillus fumigatus in scanning electron micrographs, we could visualize surface perturbation caused by LP24. LP24 (5 mg/kg) significantly reduces the A. fumigatus burden among the various organs of infected animals, and 70% of the infected mice survived when observed for 28 days. This study underscores the potential of small cationic abiotic lipopeptides to develop into the next-generation antimicrobial therapy.
Collapse
Affiliation(s)
- Sandeep Lohan
- Department of Pharmacy, Jaypee University of Information Technology, Solan, 173234, India
| | - Jitender Monga
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Chetan Singh Chauhan
- Department of Pharmacy, Bhupal Noble College of Pharmacy, Udaipur, Rajasthan, 313002, India
| | - Gopal Singh Bisht
- Department of Pharmacy, Jaypee University of Information Technology, Solan, 173234, India.,Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173234, India
| |
Collapse
|