1
|
Liao Z, Xie L, Mamitsuka H, Zhu S. Sc2Mol: a scaffold-based two-step molecule generator with variational autoencoder and transformer. Bioinformatics 2023; 39:btac814. [PMID: 36576008 PMCID: PMC9835482 DOI: 10.1093/bioinformatics/btac814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
MOTIVATION Finding molecules with desired pharmaceutical properties is crucial in drug discovery. Generative models can be an efficient tool to find desired molecules through the distribution learned by the model to approximate given training data. Existing generative models (i) do not consider backbone structures (scaffolds), resulting in inefficiency or (ii) need prior patterns for scaffolds, causing bias. Scaffolds are reasonable to use, and it is imperative to design a generative model without any prior scaffold patterns. RESULTS We propose a generative model-based molecule generator, Sc2Mol, without any prior scaffold patterns. Sc2Mol uses SMILES strings for molecules. It consists of two steps: scaffold generation and scaffold decoration, which are carried out by a variational autoencoder and a transformer, respectively. The two steps are powerful for implementing random molecule generation and scaffold optimization. Our empirical evaluation using drug-like molecule datasets confirmed the success of our model in distribution learning and molecule optimization. Also, our model could automatically learn the rules to transform coarse scaffolds into sophisticated drug candidates. These rules were consistent with those for current lead optimization. AVAILABILITY AND IMPLEMENTATION The code is available at https://github.com/zhiruiliao/Sc2Mol. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhirui Liao
- School of Computer Science, Fudan University, Shanghai 200433, China
| | - Lei Xie
- Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065, USA
| | - Hiroshi Mamitsuka
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto Prefecture 611-0011, Japan
- Department of Computer Science, Aalto University, Espoo 00076, Finland
| | - Shanfeng Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
- Shanghai Key Lab of Intelligent Information Processing and Shanghai Institute of Artificial Intelligence Algorithm, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 200433, China
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu 210031, China
| |
Collapse
|
2
|
Asch RH, Hillmer AT, Baldassarri SR, Esterlis I. The metabotropic glutamate receptor 5 as a biomarker for psychiatric disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:265-310. [PMID: 36868631 DOI: 10.1016/bs.irn.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of glutamate system in the etiology and pathophysiology of psychiatric disorders has gained considerable attention in the past two decades, including dysregulation of the metabotropic glutamatergic receptor subtype 5 (mGlu5). Thus, mGlu5 may represent a promising therapeutic target for psychiatric conditions, particularly stress-related disorders. Here, we describe mGlu5 findings in mood disorders, anxiety, and trauma disorders, as well as substance use (specifically nicotine, cannabis, and alcohol use). We highlight insights gained from positron emission tomography (PET) studies, where possible, and discuss findings from treatment trials, when available, to explore the role of mGlu5 in these psychiatric disorders. Through the research evidence reviewed in this chapter, we make the argument that, not only is dysregulation of mGlu5 evident in numerous psychiatric disorders, potentially functioning as a disease "biomarker," the normalization of glutamate neurotransmission via changes in mGlu5 expression and/or modulation of mGlu5 signaling may be a needed component in treating some psychiatric disorders or symptoms. Finally, we hope to demonstrate the utility of PET as an important tool for investigating mGlu5 in disease mechanisms and treatment response.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale University, New Haven, CT, United States.
| | - Ansel T Hillmer
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Stephen R Baldassarri
- Yale Program in Addiction Medicine, Yale University, New Haven, CT, United States; Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
3
|
Nawrot D, Suchánková E, Janďourek O, Konečná K, Bárta P, Doležal M, Zitko J. N-pyridinylbenzamides: an isosteric approach towards new antimycobacterial compounds. Chem Biol Drug Des 2020; 97:686-700. [PMID: 33068457 DOI: 10.1111/cbdd.13804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 11/27/2022]
Abstract
A series of N-pyridinylbenzamides was designed and prepared to investigate the influence of isosterism and positional isomerism on antimycobacterial activity. Comparison to previously published isosteric N-pyrazinylbenzamides was made as an attempt to draw structure-activity relationships in such type of compounds. In total, we prepared 44 different compounds, out of which fourteen had minimum inhibitory concentration (MIC) values against Mycobacterium tuberculosis H37Ra below 31.25 µg/ml, most promising being N-(5-chloropyridin-2-yl)-3-(trifluoromethyl)benzamide (23) and N-(6-chloropyridin-2-yl)-3-(trifluoromethyl)benzamide (24) with MIC = 7.81 µg/ml (26 µm). Five compounds showed broad-spectrum antimycobacterial activity against M. tuberculosis H37Ra, M. smegmatis and M. aurum. N-(pyridin-2-yl)benzamides were generally more active than N-(pyridin-3-yl)benzamides, indicating that N-1 in the parental structure of N-pyrazinylbenzamides might be more important for antimycobacterial activity than N-4. Marginal antibacterial and antifungal activity was observed for title compounds. The hepatotoxicity of title compounds was assessed in vitro on hepatocellular carcinoma cell line HepG2, and they may be considered non-toxic (22 compounds with IC50 over 200 µm).
Collapse
Affiliation(s)
- Daria Nawrot
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eliška Suchánková
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ondřej Janďourek
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Klára Konečná
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Bárta
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Martin Doležal
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jan Zitko
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Felts AS, Rodriguez AL, Morrison RD, Blobaum AL, Byers FW, Daniels JS, Niswender CM, Conn PJ, Lindsley CW, Emmitte KA. Discovery of 6-(pyrimidin-5-ylmethyl)quinoline-8-carboxamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett 2018; 28:1679-1685. [PMID: 29705142 DOI: 10.1016/j.bmcl.2018.04.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/18/2018] [Accepted: 04/21/2018] [Indexed: 11/16/2022]
Abstract
Based on previous work that established fused heterocycles as viable alternatives for the picolinamide core of our lead series of mGlu5 negative allosteric modulators (NAMs), we designed a novel series of 6-(pyrimidin-5-ylmethyl)quinoline-8-carboxamide mGlu5 NAMs. These new quinoline derivatives also contained carbon linkers as replacements for the diaryl ether oxygen atom common to our previously published chemotypes. Compounds were evaluated in a cell-based functional mGlu5 assay, and an exemplar analog 27 was >60-fold selective versus the other seven mGlu receptors. Selected compounds were also studied in metabolic stability assays in rat and human S9 hepatic fractions and exhibited a mixture of P450- and non-P450-mediated metabolism.
Collapse
Affiliation(s)
- Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Frank W Byers
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Christopher JA, Orgován Z, Congreve M, Doré AS, Errey JC, Marshall FH, Mason JS, Okrasa K, Rucktooa P, Serrano-Vega MJ, Ferenczy GG, Keserű GM. Structure-Based Optimization Strategies for G Protein-Coupled Receptor (GPCR) Allosteric Modulators: A Case Study from Analyses of New Metabotropic Glutamate Receptor 5 (mGlu5) X-ray Structures. J Med Chem 2018; 62:207-222. [DOI: 10.1021/acs.jmedchem.7b01722] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- John A. Christopher
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| | - Miles Congreve
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Andrew S. Doré
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - James C. Errey
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Fiona H. Marshall
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Jonathan S. Mason
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Krzysztof Okrasa
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Prakash Rucktooa
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | | | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| |
Collapse
|
6
|
Felts AS, Rodriguez AL, Morrison RD, Bollinger KA, Venable DF, Blobaum AL, Byers FW, Thompson Gray A, Daniels JS, Niswender CM, Jones CK, Conn PJ, Lindsley CW, Emmitte KA. Discovery of imidazo[1,2-a]-, [1,2,4]triazolo[4,3-a]-, and [1,2,4]triazolo[1,5-a]pyridine-8-carboxamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett 2017; 27:4858-4866. [PMID: 28958625 DOI: 10.1016/j.bmcl.2017.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 12/01/2022]
Abstract
Based on a hypothesis that an intramolecular hydrogen bond was present in our lead series of picolinamide mGlu5 NAMs, we reasoned that an inactive nicotinamide series could be modified through introduction of a fused heterocyclic core to generate potent mGlu5 NAMs. In this Letter, we describe the synthesis and evaluation of compounds that demonstrate the viability of that approach. Selected analogs were profiled in a variety of in vitro assays, and two compounds were evaluated in rat pharmacokinetic studies and a mouse model of obsessive-compulsive disorder. Ancillary pharmacology screening revealed that members of this series exhibited moderate inhibition of the dopamine transporter (DAT), and SAR was developed that expanded the selectivity for mGlu5 versus DAT.
Collapse
Affiliation(s)
- Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Katrina A Bollinger
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Daryl F Venable
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Frank W Byers
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Analisa Thompson Gray
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, TN 37232, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
7
|
Felts AS, Rodriguez AL, Blobaum AL, Morrison RD, Bates BS, Thompson Gray A, Rook JM, Tantawy MN, Byers FW, Chang S, Venable DF, Luscombe VB, Tamagnan GD, Niswender CM, Daniels JS, Jones CK, Conn PJ, Lindsley CW, Emmitte KA. Discovery of N-(5-Fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide (VU0424238): A Novel Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5 Selected for Clinical Evaluation. J Med Chem 2017; 60:5072-5085. [PMID: 28530802 PMCID: PMC5484149 DOI: 10.1021/acs.jmedchem.7b00410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Preclinical evidence in support of
the potential utility of mGlu5 NAMs for the treatment of
a variety of psychiatric and neurodegenerative
disorders is extensive, and multiple such molecules have entered clinical
trials. Despite some promising results from clinical studies, no small
molecule mGlu5 NAM has yet to reach market. Here we present
the discovery and evaluation of N-(5-fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide
(27, VU0424238), a compound selected for clinical evaluation.
Compound 27 is more than 900-fold selective for mGlu5 versus the other mGlu receptors, and binding studies established
a Ki value of 4.4 nM at a known allosteric
binding site. Compound 27 had a clearance of 19.3 and
15.5 mL/min/kg in rats and cynomolgus monkeys, respectively. Imaging
studies using a known mGlu5 PET ligand demonstrated 50%
receptor occupancy at an oral dose of 0.8 mg/kg in rats and an intravenous
dose of 0.06 mg/kg in baboons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mohammed N Tantawy
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | | | | | | | | - Gilles D Tamagnan
- Molecular NeuroImaging, a Division of inviCRO , New Haven, Connecticut 06510, United States
| | | | | | | | | | | | | |
Collapse
|
8
|
Computer-aided design of negative allosteric modulators of metabotropic glutamate receptor 5 (mGluR5): Comparative molecular field analysis of aryl ether derivatives. Bioorg Med Chem Lett 2016; 26:1140-4. [PMID: 26826734 DOI: 10.1016/j.bmcl.2016.01.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 01/27/2023]
Abstract
The metabotropic glutamate receptors (mGlu receptors) have emerged as attractive targets for number of neurological and psychiatric disorders. Recently, mGluR5 negative allosteric modulators (NAMs) have gained considerable attention in pharmacological research. Comparative molecular field analysis (CoMFA) was performed on 73 analogs of aryl ether which were reported as mGluR5 NAMs. The study produced a statistically significant model with high correlation coefficient and good predictive abilities.
Collapse
|