1
|
Ryabukhin SV, Bondarenko DV, Trofymchuk SA, Lega DA, Volochnyuk DM. Aza-Heterocyclic Building Blocks with In-Ring CF 2 -Fragment. CHEM REC 2024; 24:e202300283. [PMID: 37873869 DOI: 10.1002/tcr.202300283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Modern organic chemistry is a titan supporting and reinforcing pharmaceutical, agricultural, food and material science products. Over the past decades, the organic compounds market has been evolving to meet all the research demands. In this regard, medicinal chemistry is especially dependent on available chemical space as subtle tuning of the molecule structure is required to create a drug with relevant physicochemical properties and a remarkable activity profile. The recent rapid evolution of synthetic methodology to deploy fluorine has brought fluorinated compounds to the spotlight of MedChem community. And now unique properties of fluorine still keep fascinating more and more as its justified installation into a molecular framework has a beneficial impact on membrane permeability, lipophilicity, metabolic stability, pharmacokinetic properties, conformation, pKa , etc. The backward influence of medicinal chemistry on organic synthesis has also changed the landscape of the latter towards new fluorinated topologies as well. Such complex relationships create a flexible and ever-changing ecosystem. Given that MedChem investigations strongly lean on the ability to reach suitable building blocks and the existence of reliable synthetic methods in this review we collected advances in the chemistry of respectful, but still enigmatic gem-difluorinated aza-heterocyclic building blocks.
Collapse
Affiliation(s)
- S V Ryabukhin
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| | - D V Bondarenko
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
| | - S A Trofymchuk
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| | - D A Lega
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- National University of Pharmacy of the Ministry of Health of Ukraine, 53 Pushkinska str., 61002, Kharkiv, Ukraine
| | - D M Volochnyuk
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| |
Collapse
|
2
|
Halder AK, Mitra S, Cordeiro MNDS. Designing multi-target drugs for the treatment of major depressive disorder. Expert Opin Drug Discov 2023; 18:643-658. [PMID: 37183604 DOI: 10.1080/17460441.2023.2214361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Major depressive disorders (MDD) pose major health burdens globally. Currently available medications have their limitations due to serious adverse effects, long latency periods as well as resistance. Considering the highly complicated pathological nature of this disorder, it has been suggested that multitarget drugs or multi-target-directed ligands (MTDLs) may provide long-term therapeutic solutions for the treatment of MDD. AREAS COVERED In the current review, recent lead design and lead modification strategies have been covered. Important investigations reported in the last ten years (2013-2022) for the pre-clinical development of MTDLs (through synthetic medicinal chemistry and biological evaluation) for the treatment of MDD were discussed as case studies to focus on the recent design strategies. The discussions are categorized based on the pharmacological targets. On the basis of these important case studies, the challenges involved in different design strategies were discussed in detail. EXPERT OPINION Even though large variations were observed in the selection of pharmacological targets, some potential biological targets (NMDA, melatonin receptors) are required to be explored extensively for the design of MTDLs. Similarly, apart from structure activity relationship (SAR), in silico techniques such as multitasking cheminformatic modelling, molecular dynamics simulation and virtual screening should be exploited to a greater extent.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur 713206, India
| | - Soumya Mitra
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur 713206, India
| | - Maria Natalia D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Singh K, Bhatia R, Kumar B, Singh G, Monga V. Design Strategies, Chemistry and Therapeutic Insights of Multi-target Directed Ligands as Antidepressant Agents. Curr Neuropharmacol 2022; 20:1329-1358. [PMID: 34727859 PMCID: PMC9881079 DOI: 10.2174/1570159x19666211102154311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Depression is one of the major disorders of the central nervous system worldwide and causes disability and functional impairment. According to the World Health Organization, around 265 million people worldwide are affected by depression. Currently marketed antidepressant drugs take weeks or even months to show anticipated clinical efficacy but remain ineffective in treating suicidal thoughts and cognitive impairment. Due to the multifactorial complexity of the disease, single-target drugs do not always produce satisfactory results and lack the desired level of therapeutic efficacy. Recent literature reports have revealed improved therapeutic potential of multi-target directed ligands due to their synergistic potency and better safety. Medicinal chemists have gone to great extents to design multitarget ligands by generating structural hybrids of different key pharmacophores with improved binding affinities and potency towards different receptors or enzymes. This article has compiled the design strategies of recently published multi-target directed ligands as antidepressant agents. Their biological evaluation, structural-activity relationships, mechanistic and in silico studies have also been described. This article will prove to be highly useful for the researchers to design and develop multi-target ligands as antidepressants with high potency and therapeutic efficacy.
Collapse
Affiliation(s)
- Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda-151401, Punjab, India
| |
Collapse
|
4
|
Subbaiah MAM. Triple Reuptake Inhibitors as Potential Therapeutics for Depression and Other Disorders: Design Paradigm and Developmental Challenges. J Med Chem 2017; 61:2133-2165. [DOI: 10.1021/acs.jmedchem.6b01827] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Murugaiah A. M. Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol-Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| |
Collapse
|
5
|
Lin W, Yang L, Chai SC, Lu Y, Chen T. Development of CINPA1 analogs as novel and potent inverse agonists of constitutive androstane receptor. Eur J Med Chem 2015; 108:505-528. [PMID: 26717202 DOI: 10.1016/j.ejmech.2015.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
Constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) are master regulators of endobiotic and xenobiotic metabolism and disposition. Because CAR is constitutively active in certain cellular contexts, inhibiting CAR might reduce drug-induced hepatotoxicity and resensitize drug-resistant cancer cells to chemotherapeutic drugs. We recently reported a novel CAR inhibitor/inverse agonist CINPA1 (11). Here, we have obtained or designed 54 analogs of CINPA1 and used a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate their CAR inhibition potency. Many of the 54 analogs showed CAR inverse agonistic activities higher than those of CINPA1, which has an IC50 value of 687 nM. Among them, 72 has an IC50 value of 11.7 nM, which is about 59-fold more potent than CINPA1 and over 10-fold more potent than clotrimazole (an IC50 value of 126.9 nM), the most potent CAR inverse agonist in a biochemical assay previously reported by others. Docking studies provide a molecular explanation of the structure-activity relationship (SAR) observed experimentally. To our knowledge, this effort is the first chemistry endeavor in designing and identifying potent CAR inverse agonists based on a novel chemical scaffold, leading to 72 as the most potent CAR inverse agonist so far. The 54 chemicals presented are novel and unique tools for characterizing CAR's function, and the SAR information gained from these 54 analogs could guide future efforts to develop improved CAR inverse agonists.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States
| | - Yan Lu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States.
| |
Collapse
|
6
|
Fujimori I, Yukawa T, Kamei T, Nakada Y, Sakauchi N, Yamada M, Ohba Y, Takiguchi M, Kuno M, Kamo I, Nakagawa H, Hamada T, Igari T, Okuda T, Yamamoto S, Tsukamoto T, Ishichi Y, Ueno H. Design, synthesis and biological evaluation of a novel series of peripheral-selective noradrenaline reuptake inhibitor. Bioorg Med Chem 2015; 23:5000-5014. [DOI: 10.1016/j.bmc.2015.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 11/29/2022]
|