1
|
Huynh TT, Wang Y, Terpstra K, Cho HJ, Mirica LM, Rogers BE. 68Ga-Labeled Benzothiazole Derivatives for Imaging Aβ Plaques in Cerebral Amyloid Angiopathy. ACS OMEGA 2022; 7:20339-20346. [PMID: 35721913 PMCID: PMC9202065 DOI: 10.1021/acsomega.2c02369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/20/2022] [Indexed: 05/17/2023]
Abstract
Timely diagnostic imaging plays a crucial role in managing cerebral amyloid angiopathy (CAA)-the condition in which amyloid β is deposited on blood vessels. To selectively map these amyloid plaques, we have designed amyloid-targeting ligands that can effectively complex with 68Ga3+ while maintaining good affinity for amyloid β. In this study, we introduced novel 1,4,7-triazacyclononane-based bifunctional chelators (BFCs) that incorporate a benzothiazole moiety as the Aβ-binding fragment and form charged and neutral species with 68Ga3+. In vitro autoradiography using 5xFAD and WT mouse brain sections (11-month-old) suggested strong and specific binding of the 68Ga complexes to amyloid β. Biodistribution studies in CD-1 mice revealed a low brain uptake of 0.10-0.33% ID/g, thus suggesting 68Ga-labeled novel BFCs as promising candidates for detecting CAA.
Collapse
Affiliation(s)
- Truc T. Huynh
- Department
of Radiation Oncology, Washington University
School of Medicine, 4511
Forest Park Avenue, St. Louis, Missouri 63108, United
States
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Yujue Wang
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Karna Terpstra
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Hong-Jun Cho
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Liviu M. Mirica
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United
States
- Hope
Center for Neurological Disorders, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Buck E. Rogers
- Department
of Radiation Oncology, Washington University
School of Medicine, 4511
Forest Park Avenue, St. Louis, Missouri 63108, United
States
| |
Collapse
|
2
|
Chaves S, Gwizdała K, Chand K, Gano L, Pallier A, Tóth É, Santos MA. Gd III and Ga III complexes with a new tris-3,4-HOPO ligand as new imaging probes: complex stability, magnetic properties and biodistribution. Dalton Trans 2022; 51:6436-6447. [PMID: 35388858 DOI: 10.1039/d2dt00066k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of metal-based multimodal imaging probes is a highly challenging field in coordination chemistry. In this context, we have developed a bifunctional hexadentate tripodal ligand (H3L2) with three 3,4-HOPO moieties attached to a flexible tetrahedral carbon bearing a functionalizable nitro group. Complexes formed with different metal ions have potential interest for diagnostic applications, namely magnetic resonance imaging (MRI) and positron emission tomography (PET). The capacity of the ligand to coordinate GdIII and GaIII was studied and the thermodynamic stability constants of the respective complexes were determined by potentiometry and spectrophotometry. The ligand forms stable 1 : 1 ML complexes though with considerably higher affinity for GaIII than for GdIII (pGa = 26.2 and pGd = 14.3 at pH 7). The molecular dynamics simulations of the GdIII complex indicate that two water molecules can coordinate the metal ion, thus providing efficient paramagnetic enhancement of water proton relaxation. The relaxation and the water exchange properties of the GdIII chelate, assessed by a combined 17O NMR and 1H NMRD study, showed associative activated water exchange with a relatively low rate constant, k298ex = (0.82 ± 0.11) × 107 s-1, and some aggregation tendency. Biodistribution studies of the 67Ga-L2 complex suggested good in vivo stability and quick renal clearance. Further anchoring of this ligand with specific biotargeting moieties might open future prospectives for applications of labelled conjugates in both MRI and 68Ga-PET diagnostic imaging.
Collapse
Affiliation(s)
- Silvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| | - Karolina Gwizdała
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal. .,Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Karam Chand
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France.
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France.
| | - M Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| |
Collapse
|
3
|
Krasnovskaya O, Spector D, Zlobin A, Pavlov K, Gorelkin P, Erofeev A, Beloglazkina E, Majouga A. Metals in Imaging of Alzheimer's Disease. Int J Mol Sci 2020; 21:E9190. [PMID: 33276505 PMCID: PMC7730413 DOI: 10.3390/ijms21239190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/23/2022] Open
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the deposition of amyloid plaques in the brain parenchyma, which occurs 7-15 years before the onset of cognitive symptoms of the pathology. Timely diagnostics of amyloid formations allows identifying AD at an early stage and initiating inhibitor therapy, delaying the progression of the disease. However, clinically used radiopharmaceuticals based on 11C and 18F are synchrotron-dependent and short-lived. The design of new metal-containing radiopharmaceuticals for AD visualization is of interest. The development of coordination compounds capable of effectively crossing the blood-brain barrier (BBB) requires careful selection of a ligand moiety, a metal chelating scaffold, and a metal cation, defining the method of supposed Aβ visualization. In this review, we have summarized metal-containing drugs for positron emission tomography (PET), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) imaging of Alzheimer's disease. The obtained data allow assessing the structure-ability to cross the BBB ratio.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| | - Daniil Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| | - Alexander Zlobin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
| | - Kirill Pavlov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
| | - Peter Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
| | - Alexander Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, Miusskaya Ploshchad’ 9, 125047 Moscow, Russia
| |
Collapse
|
4
|
Oliveira AC, Costa T, Justino LLG, Fausto R, Morfin JF, Tóth É, Geraldes CFGC, Burrows HD. Photophysical studies on lanthanide(III) chelates conjugated to Pittsburgh compound B as luminescent probes targeted to Aβ amyloid aggregates. Photochem Photobiol Sci 2020; 19:1522-1537. [PMID: 32966544 DOI: 10.1039/d0pp00214c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The photophysical properties of Eu3+ and Tb3+ complexes of DOTAGA and DO3A-monoamide conjugates of the Pittsburgh compound B (PiB) chromophore, prepared using linkers of different lengths and flexibilities, and which form stable negatively charged (LnL1), and uncharged (LnL2) complexes, respectively, were studied as potential probes for optical detection of amyloid aggregates. The phenylbenzothiazole (PiB) moiety absorbs light at wavelengths longer than 330 nm with a high molar absorption coefficient in both probes, and acts as an antenna in these systems. The presence of the luminescent Ln3+ ion quenches the excited states of PiB through an energy transfer process from the triplet state of PiB to the metal centre, and structured emission is seen from Eu3+ and Tb3+. The luminescence study indicates the presence of a 5D4 → T1 back transfer process in the Tb3+ complexes. It also provides insights on structural properties of the Eu3+ complexes, such as the high symmetry environment of the Eu3+ ion in a single macrocyclic conformation and the presence of one water molecule in its inner coordination sphere. The overall quantum yield of luminescence of EuL1 is higher than for EuL2. However, their low values reflect the low overall sensitization efficiency of the energy transfer process, which is a consequence of the large distances between the metal center and the antenna, especially in the EuL2 complex. DFT calculations confirmed that the most stable conformation of the Eu3+ complexes involves a combination of a square antiprismatic (SAP) geometry of the chelate and an extended conformation of the linker. The large calculated average distances between the metal center and the antenna point to the predominance of the Förster energy transfer mechanism, especially for EuL2. This study provides insights into the behavior of amyloid-targeted Ln3+ complexes as optical probes, and contributes towards their rational design.
Collapse
Affiliation(s)
- Alexandre C Oliveira
- University of Coimbra, Coimbra Chemistry Centre (CQC), Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Telma Costa
- University of Coimbra, Coimbra Chemistry Centre (CQC), Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Licinia L G Justino
- University of Coimbra, Coimbra Chemistry Centre (CQC), Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Rui Fausto
- University of Coimbra, Coimbra Chemistry Centre (CQC), Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Jean-François Morfin
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Carlos F G C Geraldes
- University of Coimbra, Coimbra Chemistry Centre (CQC), Department of Chemistry, 3004-535 Coimbra, Portugal. and University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal. and CIBIT/ICNAS - Instituto de Ciências Nucleares Aplicadas à Saúde, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Hugh D Burrows
- University of Coimbra, Coimbra Chemistry Centre (CQC), Department of Chemistry, 3004-535 Coimbra, Portugal.
| |
Collapse
|
5
|
Sedgwick AC, Brewster JT, Harvey P, Iovan DA, Smith G, He XP, Tian H, Sessler JL, James TD. Metal-based imaging agents: progress towards interrogating neurodegenerative disease. Chem Soc Rev 2020; 49:2886-2915. [DOI: 10.1039/c8cs00986d] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transition metals and lanthanide ions display unique properties that enable the development of non-invasive diagnostic tools for imaging. In this review, we highlight various metal-based imaging strategies used to interrogate neurodegeneration.
Collapse
Affiliation(s)
- Adam C. Sedgwick
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | | - Peter Harvey
- Department of Biological Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Sir Peter Mansfield Imaging Centre
| | - Diana A. Iovan
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Graham Smith
- Division of Radiotherapy & Imaging
- Institute of Cancer Research
- London
- UK
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | | | | |
Collapse
|
6
|
Molavipordanjani S, Emami S, Hosseinimehr SJ. 99mTc-labeled Small Molecules for Diagnosis of Alzheimer’s Disease: Past, Recent and Future Perspectives. Curr Med Chem 2019; 26:2166-2189. [DOI: 10.2174/0929867325666180410104023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/21/2018] [Accepted: 04/05/2018] [Indexed: 01/22/2023]
Abstract
Background:
Alzheimer’s disease (AD) is an age-related progressive neurodegenerative disease.
Its prominent hallmarks are extracellular deposition of β-amyloids (amyloid plaques), intracellular
neurofibrillary tangles (NTFs), neurodegeneration and finally loss of cognitive function. Hence, AD diagnosis
in the early stage and monitoring of the disease are of great importance.
Methods:
In this review article, we have reviewed recent efforts for design, synthesis and evaluation of
99mTc labeled small molecule for AD imaging purposes.
Results:
These small molecules include derivatives of Congo red, benzothiazole, benzofuran, benzoxazole,
naphthalene, biphenyl, chalcone, flavone, aurone, stilbene, curcumin, dibenzylideneacetone,
quinoxaline, etc. The different aspects of 99mTc-labeled small molecules including chemical structure,
their affinity toward amyloid plaques, BBB permeation and in vivo/vitro stability will be discussed.
Conclusion:
The findings of this review confirm the importance of 99mTc-labeled small molecules for AD
imaging. Future studies based on the pharmacophore of these designed compounds are needed for improvement
of these molecules for clinical application.
Collapse
Affiliation(s)
- Sajjad Molavipordanjani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Amyloid β-targeted metal complexes for potential applications in Alzheimer's disease. Future Med Chem 2018; 10:679-701. [DOI: 10.4155/fmc-2017-0248] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is currently an incurable neurodegenerative disorder that affects millions of people around the world. The aggregation of amyloid-β peptides (Aβ), one of the primary pathological hallmarks of AD, plays a key role in the AD pathogenesis. In this regard, Aβ aggregates have been considered as both biomarkers and drug targets for the diagnosis and therapy of AD. Various Aβ-targeted metal complexes have exhibited promising potential as anti-AD agents due to their fascinating physicochemical properties over the past two decades. This review classifies the complexes into three groups based on their potential applications in AD including therapy, diagnosis and theranosis. The recent representative examples are highlighted in terms of design rationale, working mechanism and potential applications.
Collapse
|
8
|
Prospective of 68Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation. CONTRAST MEDIA & MOLECULAR IMAGING 2018. [PMID: 29531507 PMCID: PMC5817300 DOI: 10.1155/2018/9713691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last decade, the utilization of 68Ga for the development of imaging agents has increased considerably with the leading position in the oncology. The imaging of infection and inflammation is lagging despite strong unmet medical needs. This review presents the potential routes for the development of 68Ga-based agents for the imaging and quantification of infection and inflammation in various diseases and connection of the diagnosis to the treatment for the individualized patient management.
Collapse
|
9
|
Watanabe K, Mino T, Ishikawa E, Masuda C, Yoshida Y, Sakamoto M. Hydrazone–Pd-catalyzed direct intermolecular reaction of o-alkynylphenols with allylic acetates. Org Biomol Chem 2018; 16:575-584. [DOI: 10.1039/c7ob02873c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hydrazone–palladium catalyzed direct intermolecular reaction of o-alkynylphenols with allylic acetates gave the corresponding 2-substituted-3-allylbenzofuran derivatives at room temperature.
Collapse
Affiliation(s)
- Kohei Watanabe
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Takashi Mino
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
- Molecular Chirality Research Center
| | - Eri Ishikawa
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Chihiro Masuda
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Yasushi Yoshida
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
- Molecular Chirality Research Center
| | - Masami Sakamoto
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
- Molecular Chirality Research Center
| |
Collapse
|
10
|
Cressier D, Dhilly M, Cao Pham TT, Fillesoye F, Gourand F, Maïza A, Martins AF, Morfin JF, Geraldes CFGC, Tóth É, Barré L. Gallium-68 Complexes Conjugated to Pittsburgh Compound B: Radiolabeling and Biological Evaluation. Mol Imaging Biol 2017; 18:334-43. [PMID: 26543029 DOI: 10.1007/s11307-015-0906-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE The aim of this work is to develop an efficient and fully automated radiosynthesis of three derivatives of the Pittsburgh compound B labeled with gallium-68 for the detection of amyloid plaques. PROCEDURES The radiolabeling of the precursors and purification of the radiolabeled agents by high pressure liquid chromatography has been studied prior to their in vitro and in vivo evaluations. RESULTS The complete process led, in 50 min, to pure Ga-68 products in a 12-38 % yield and with appreciable specific radioactivity (SRA, 85-168 GBq/μmol) which enabled us to demonstrate a considerable in vivo stability of the products. Unfortunately, this result was associated with a poor blood-brain barrier (BBB) permeability and a limited uptake of our compounds by amyloid deposits was observed by in vitro autoradiography. CONCLUSION Although we have not yet identified a compound able to significantly mark cerebral amyloidosis, this present investigation will likely contribute to the development of more successful Ga-68 radiotracers.
Collapse
Affiliation(s)
- Damien Cressier
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France. .,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France. .,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.
| | - Martine Dhilly
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France.,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France
| | - Thang T Cao Pham
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France.,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France
| | - Fabien Fillesoye
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France.,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France
| | - Fabienne Gourand
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France.,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France
| | - Auriane Maïza
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France.,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France
| | - André F Martins
- Centre de Biophysique Moléculaire UPR 4301, CNRS, Université d'Orléans, 45071, Orléans, France.,Department of Life Sciences and Coimbra Chemistry Center, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Jean-François Morfin
- Centre de Biophysique Moléculaire UPR 4301, CNRS, Université d'Orléans, 45071, Orléans, France
| | - Carlos F G C Geraldes
- Department of Life Sciences and Coimbra Chemistry Center, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Éva Tóth
- Centre de Biophysique Moléculaire UPR 4301, CNRS, Université d'Orléans, 45071, Orléans, France
| | - Louisa Barré
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France.,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France
| |
Collapse
|
11
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 545] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
12
|
Chen K, Cui M. Recent progress in the development of metal complexes as β-amyloid imaging probes in the brain. MEDCHEMCOMM 2017; 8:1393-1407. [PMID: 30108850 PMCID: PMC6072098 DOI: 10.1039/c7md00064b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/11/2017] [Indexed: 01/28/2023]
Abstract
In this review, we have focused on the recent progress in metal complexes that are able to bind to β-amyloid (Aβ) species. We have discussed various radioactive complexes of 99mTc, 68Ga, 64Cu, 89Zr, and 111In, which were designed as Aβ imaging agents for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging, non-radioactive Re and Ru complexes as Aβ sensors using luminescence methods, and Gd3+ complexes as contrast agents for magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Kaihua Chen
- Key Laboratory of Radiopharmaceuticals , Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China . ; ; Tel: +86 10 58808891
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals , Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China . ; ; Tel: +86 10 58808891
| |
Collapse
|
13
|
Vorster M, Maes A, Wiele CVD, Sathekge M. Gallium-68 PET: A Powerful Generator-based Alternative to Infection and Inflammation Imaging. Semin Nucl Med 2017; 46:436-47. [PMID: 27553469 DOI: 10.1053/j.semnuclmed.2016.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The process of inflammation (with or without infection) forms part of essentially every major debilitating disease. Early detection and accurate distinction of inflammation from infection are important to optimize and individualize therapy. Nuclear medicine is ideally suited for the detection of pathologic changes early on and is able to target a magnitude of role players involved in the aforementioned processes. Hybrid modalities such as PET/CT and PET/MRI offer high spatial resolution that combines morphologic and pathophysiological changes and add various quantification possibilities that are preferable in these settings. It follows then that the development of PET radiopharmaceuticals is imperative to make use of these latest advances. Gallium-68 (Ga-68)-based tracers are exceptionally well suited to these indications, considering the year-round availability from a single generator, the relative cost-effectiveness, and relative ease of labeling. Over the past few years, the development of Ga-68-based tracers has understandably exploded with a recent growing interest in infection and inflammation imaging. This review aims to highlight some of the most important and interesting advances made with Ga-68-based PET/CT in the field of infection and inflammation imaging.
Collapse
Affiliation(s)
- Mariza Vorster
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Alex Maes
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Christophe van de Wiele
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
14
|
Lacerda S, Morfin JF, Geraldes CFGC, Tóth É. Metal complexes for multimodal imaging of misfolded protein-related diseases. Dalton Trans 2017; 46:14461-14474. [DOI: 10.1039/c7dt02371e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aggregation of misfolded proteins and progressive polymerization of otherwise soluble proteins is a common hallmark of several highly debilitating and increasingly prevalent diseases, including amyotrophic lateral sclerosis, cerebral amyloid angiopathy, type II diabetes and Parkinson's, Huntington's and Alzheimer's diseases.
Collapse
Affiliation(s)
- S. Lacerda
- Centre de Biophysique Moléculaire
- CNRS
- UPR 4301
- Université d'Orléans
- 45071 Orléans Cedex 2
| | - J.-F. Morfin
- Centre de Biophysique Moléculaire
- CNRS
- UPR 4301
- Université d'Orléans
- 45071 Orléans Cedex 2
| | - C. F. G. C. Geraldes
- Department of Life Sciences
- Faculty of Sciences and Technology
- University of Coimbra
- 3000-393 Coimbra
- Portugal
| | - É. Tóth
- Centre de Biophysique Moléculaire
- CNRS
- UPR 4301
- Université d'Orléans
- 45071 Orléans Cedex 2
| |
Collapse
|
15
|
Spang P, Herrmann C, Roesch F. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Semin Nucl Med 2016; 46:373-94. [DOI: 10.1053/j.semnuclmed.2016.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Synthesis and evaluation of copper-64 labeled benzofuran derivatives targeting β-amyloid aggregates. Bioorg Med Chem 2016; 24:3618-23. [PMID: 27301677 DOI: 10.1016/j.bmc.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022]
Abstract
In vivo imaging of β-amyloid (Aβ) aggregates consisting of Aβ(1-40) and Aβ(1-42) peptides by positron emission tomography (PET) contributes to the diagnosis and therapy for Alzheimer's disease (AD). Because (64)Cu (t1/2=12.7h) is a radionuclide for PET with a longer physical half-life than (11)C (t1/2=20min) and (18)F (t1/2=110min), it is an attractive radionuclide for the development of Aβ imaging probes that are suitable for routine use. In the present study, we designed and synthesized two novel (64)Cu labeled benzofuran derivatives and evaluated their utility as PET imaging probes for Aβ aggregates. In an in vitro binding assay, 6 and 8 showed binding affinity for Aβ(1-42) aggregates with a Ki value of 33 and 243nM, respectively. In addition, these probes bound to Aβ plaques deposited in the brain of an AD model mouse in vitro. In a biodistribution experiment using normal mice, these probes showed low brain uptake (0.33% and 0.36% ID/g) at 2min post-injection. Although refinement to enhance brain uptake is needed, [(64)Cu]6 and [(64)Cu]8 demonstrated the feasibility of developing novel PET probes for imaging Aβ aggregates.
Collapse
|
17
|
A gallium(III) Schiff base-curcumin complex that binds to amyloid-β plaques. J Inorg Biochem 2016; 162:274-279. [PMID: 26988571 DOI: 10.1016/j.jinorgbio.2016.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/18/2016] [Accepted: 02/25/2016] [Indexed: 01/20/2023]
Abstract
Gallium-68 is a positron-emitting isotope that can be used in positron-emission tomography imaging agents. Alzheimer's disease is associated with the formation of plaques in the brain primarily comprised of aggregates of a 42 amino acid protein called amyloid-β. With the goal of synthesising charge neutral, low molecular weight, lipophilic gallium complexes with the potential to cross the blood-brain barrier and bind to Aβ plaques we have used an ancillary tetradentate N2O2 Schiff base ligand and the β-diketone curcumin as a bidentate ligand to give a six-coordinate Ga3+ complex. The tetradentate Schiff base ligand adopts the cis-β configuration with deprotonated curcumin acting as a bidentate ligand. The complex binds to amyloid-β plaques in human brain tissue and it is possible that extension of this chemistry to positron-emitting gallium-68 could provide useful imaging agents for Alzheimer's disease.
Collapse
|
18
|
Watanabe K, Mino T, Ikematsu T, Hatta C, Yoshida Y, Sakamoto M. Hydrazone–palladium catalyzed annulation of 1-cinnamyloxy-2-ethynylbenzene derivatives. Org Chem Front 2016. [DOI: 10.1039/c6qo00112b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The annulation of 1-cinnamyloxy-2-ethynylbenzene derivatives using a hydrazone–palladium catalyst system proceeded smoothly and gave the corresponding 2-substituted-3-cinnamylbenzofurans in good-to-excellent yields.
Collapse
Affiliation(s)
- Kohei Watanabe
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Takashi Mino
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Tatsuya Ikematsu
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Chikako Hatta
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Yasushi Yoshida
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| |
Collapse
|