1
|
Chen J, Chen C, Zhang Z, Zeng F, Zhang S. Exploring the Key Amino Acid Residues Surrounding the Active Center of Lactate Dehydrogenase A for the Development of Ideal Inhibitors. Molecules 2024; 29:2029. [PMID: 38731521 PMCID: PMC11085338 DOI: 10.3390/molecules29092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.
Collapse
Affiliation(s)
- Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| | - Zhengfu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| | - Fancai Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong 637009, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| |
Collapse
|
2
|
Paul SK, Dutta Chowdhury K, Dey SR, Paul A, Haldar R. Exploring the possibility of drug repurposing for cancer therapy targeting human lactate dehydrogenase A: a computational approach. J Biomol Struct Dyn 2023; 41:9967-9976. [PMID: 36576127 DOI: 10.1080/07391102.2022.2158134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/12/2022] [Indexed: 12/29/2022]
Abstract
Human lactate dehydrogenase A (LDHA) is an anaerobic glycolytic enzyme involved in the inter-conversion of pyruvate to lactate. The level of LDHA in various types of cancer cells is found to be elevated and the dependence of cancer cells on anaerobic glycolysis is viewed as the reason for this elevation. Moreover, inhibition of LDHA activity has been shown to be effective in impairing the growth of tumors, making the LDHA as a potential target for cancer therapy. In this computational study, we have performed a pharmacophore based screening of approved drugs followed by a molecular docking based screening to find a few potential LDHA inhibitors. Molecular dynamics simulations have also been performed to examine the stability of the LDHA-drug complexes as obtained from the docking study. The result of the study showed that darunavir, moxalactam and eprosartan can bind to the active site of LDHA with high affinity in comparison to two known synthetic inhibitors of LDHA. The results of the molecular dynamics simulation showed that these drugs can bind stably with the enzyme through hydrogen bond and hydrophobic interactions. Hence, it is concluded that darunavir, moxalactam and eprosartan may be considered as potential inhibitors of LDHA and can be used for cancer therapy after proper validation of their effectiveness through in vitro, in vivo and clinical trials.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanjay Kumar Paul
- Department of Zoology, Rammohan College, Kolkata, West Bengal, India
| | | | - Santi Ranjan Dey
- Department of Zoology, Rammohan College, Kolkata, West Bengal, India
| | - Ayantika Paul
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Rajen Haldar
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Wei B, Robarge K, Labadie SS, Chen J, Corson LB, DiPasquale A, Dragovich PS, Eigenbrot C, Evangelista M, Fauber BP, Hitz A, Hong R, Wah Lai K, Liu W, Ma S, Malek S, O'Brien T, Pang J, Peterson D, Salphati L, Sampath D, Sideris S, Ultsch M, Xu Z, Yen I, Yu D, Yue Q, Zhou A, Purkey HE. Structure-based Optimization of Hydroxylactam as Potent, Cell-Active Inhibitors of Lactate Dehydrogenase. Bioorg Med Chem Lett 2022; 59:128576. [DOI: 10.1016/j.bmcl.2022.128576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 11/28/2022]
|
4
|
Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT, Rahmani AH. The Biochemical and Clinical Perspectives of Lactate Dehydrogenase: An Enzyme of Active Metabolism. Endocr Metab Immune Disord Drug Targets 2021; 20:855-868. [PMID: 31886754 DOI: 10.2174/1871530320666191230141110] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lactate dehydrogenase (LDH) is a group of oxidoreductase isoenzymes catalyzing the reversible reaction between pyruvate and lactate. The five isoforms of this enzyme, formed from two subunits, vary in isoelectric points and these isoforms have different substrate affinity, inhibition constants and electrophoretic mobility. These diverse biochemical properties play a key role in its cellular, tissue and organ specificity. Though LDH is predominantly present in the cytoplasm, it has a multi-organellar location as well. OBJECTIVE The primary objective of this review article is to provide an update in parallel, the previous and recent biochemical views and its clinical significance in different diseases. METHODS With the help of certain inhibitors, its active site three-dimensional view, reactions mechanisms and metabolic pathways have been sorted out to a greater extent. Overexpression of LDH in different cancers plays a principal role in anaerobic cellular metabolism, hence several inhibitors have been designed to employ as novel anticancer agents. DISCUSSION LDH performs a very important role in overall body metabolism and some signals can induce isoenzyme switching under certain circumstances, ensuring that the tissues consistently maintain adequate ATP supply. This enzyme also experiences some posttranslational modifications, to have diversified metabolic roles. Different toxicological and pathological complications damage various organs, which ultimately result in leakage of this enzyme in serum. Hence, unusual LDH isoform level in serum serves as a significant biomarker of different diseases. CONCLUSION LDH is an important diagnostic biomarker for some common diseases like cancer, thyroid disorders, tuberculosis, etc. In general, LDH plays a key role in the clinical diagnosis of various common and rare diseases, as this enzyme has a prominent role in active metabolism.
Collapse
Affiliation(s)
- Amjad A Khan
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Khaled S Allemailem
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia,Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Sivakumar J T Gowder
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City,
Vietnam,Faculty of Applied Sciences, Ton Duc Thang University, Vietnam
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| |
Collapse
|
5
|
LDHA Suppression Altering Metabolism Inhibits Tumor Progress by an Organic Arsenical. Int J Mol Sci 2019; 20:ijms20246239. [PMID: 31835667 PMCID: PMC6940739 DOI: 10.3390/ijms20246239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Based on the potential therapeutic value in targeting metabolism for the treatment of cancer, an organic arsenical PDT-BIPA was fabricated, which exerted selective anti-cancer activity in vitro and in vivo via targeting lactate dehydrogenase A (LDHA) to remodel the metabolic pathway. In details, the precursor PDT-BIPA directly inhibited the function of LDHA and converted the glycolysis to oxidative phosphorylation causing ROS burst and mitochondrial dysfunction. PDT-BIPA also altered several gene expression, such as HIF-1α and C-myc, to support the metabolic remodeling. All these changes lead to caspase family-dependent cell apoptosis in vivo and in vitro without obvious side effect. Our results provided this organic arsenical precursor as a promising anticancer candidate and suggested metabolism as a target for cancer therapies.
Collapse
|
6
|
Lukac I, Abdelhakim H, Ward RA, St-Gallay SA, Madden JC, Leach AG. Predicting protein-ligand binding affinity and correcting crystal structures with quantum mechanical calculations: lactate dehydrogenase A. Chem Sci 2019; 10:2218-2227. [PMID: 30881647 PMCID: PMC6388092 DOI: 10.1039/c8sc04564j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Accurately computing the geometry and energy of host-guest and protein-ligand interactions requires a physically accurate description of the forces in action. Quantum mechanics can provide this accuracy but the calculations can require a prohibitive quantity of computational resources. The size of the calculations can be reduced by including only the atoms of the receptor that are in close proximity to the ligand. We show that when combined with log P values for the ligand (which can be computed easily) this approach can significantly improve the agreement between computed and measured binding energies. When the approach is applied to lactate dehydrogenase A, it can make quantitative predictions about conformational, tautomeric and protonation state preferences as well as stereoselectivity and even identifies potential errors in structures deposited in the Protein Data Bank for this enzyme. By broadening the evidence base for these structures from only the diffraction data, more chemically realistic structures can be proposed.
Collapse
Affiliation(s)
- Iva Lukac
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Hend Abdelhakim
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Richard A Ward
- Chemistry, Oncology, IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Stephen A St-Gallay
- Sygnature Discovery Ltd , Bio City, Pennyfoot St , Nottingham , NG1 1GF , UK
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| |
Collapse
|
7
|
Crystal structure and biochemical characterization of malate dehydrogenase from Metallosphaera sedula. Biochem Biophys Res Commun 2019; 509:833-838. [DOI: 10.1016/j.bbrc.2019.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 11/22/2022]
|
8
|
Zhang SL, He Y, Tam KY. Targeting cancer metabolism to develop human lactate dehydrogenase ( h LDH)5 inhibitors. Drug Discov Today 2018; 23:1407-1415. [DOI: 10.1016/j.drudis.2018.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
|
9
|
Poli G, Granchi C, Aissaoui M, Minutolo F, Tuccinardi T. Three-Dimensional Analysis of the Interactions between hLDH5 and Its Inhibitors. Molecules 2017; 22:molecules22122217. [PMID: 29236080 PMCID: PMC6149858 DOI: 10.3390/molecules22122217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 01/08/2023] Open
Abstract
Inhibitors of human lactate dehydrogenase (hLDH5)—the enzyme responsible for the conversion of pyruvate to lactate coupled with oxidation of NADH to NAD+—are promising therapeutic agents against cancer because this enzyme is generally found to be overexpressed in most invasive cancer cells and is linked to their vitality especially under hypoxic conditions. Consequently, significant efforts have been made for the identification of small-molecule hLDH5 inhibitors displaying high inhibitory potencies. X-ray structure of hLDH5 complexes as well as molecular modeling studies contribute to identify and explain the main binding modes of hLDH5 inhibitors reported in literature. The purpose of this review is to analyze the main three-dimensional interactions between some of the most potent inhibitors and hLDH5, in order to provide useful suggestions for the design of new derivatives.
Collapse
Affiliation(s)
- Giulio Poli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy.
| | | | - Mohamed Aissaoui
- Department of Chemistry, University of Badji Mokhtar, Sidi Amar-Annaba-B.P. 12, Annaba 23000, Algeria.
| | | | | |
Collapse
|
10
|
The inhibition of lactate dehydrogenase A hinders the transcription of histone 2B gene independently from the block of aerobic glycolysis. Biochem Biophys Res Commun 2017; 485:742-745. [PMID: 28257841 DOI: 10.1016/j.bbrc.2017.02.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 01/27/2023]
Abstract
Most cancer cells use aerobic glycolysis to fuel their growth and many efforts are made to selectively block this metabolic pathway in cancer cells by inhibiting lactate dehydrogenase A (LDHA). However, LDHA is a moonlighting protein which exerts functions also in the nucleus as a factor associated to transcriptional complexes. Here we found that two small molecules which inhibit the enzymatic activity of LDHA hinder the transcription of histone 2B gene independently from the block of aerobic glycolysis. Moreover, we observed that silencing this gene reduces cell replication, hence suggesting that the inhibition of LDHA can also affect the proliferation of normal non-glycolysing dividing cells.
Collapse
|
11
|
Purkey HE, Robarge K, Chen J, Chen Z, Corson LB, Ding CZ, DiPasquale AG, Dragovich PS, Eigenbrot C, Evangelista M, Fauber BP, Gao Z, Ge H, Hitz A, Ho Q, Labadie SS, Lai KW, Liu W, Liu Y, Li C, Ma S, Malek S, O’Brien T, Pang J, Peterson D, Salphati L, Sideris S, Ultsch M, Wei B, Yen I, Yue Q, Zhang H, Zhou A. Cell Active Hydroxylactam Inhibitors of Human Lactate Dehydrogenase with Oral Bioavailability in Mice. ACS Med Chem Lett 2016; 7:896-901. [PMID: 27774125 DOI: 10.1021/acsmedchemlett.6b00190] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/26/2016] [Indexed: 12/23/2022] Open
Abstract
A series of trisubstituted hydroxylactams was identified as potent enzymatic and cellular inhibitors of human lactate dehydrogenase A. Utilizing structure-based design and physical property optimization, multiple inhibitors were discovered with <10 μM lactate IC50 in a MiaPaca2 cell line. Optimization of the series led to 29, a potent cell active molecule (MiaPaca2 IC50 = 0.67 μM) that also possessed good exposure when dosed orally to mice.
Collapse
Affiliation(s)
- Hans E. Purkey
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kirk Robarge
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Zhongguo Chen
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Laura B. Corson
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Charles Z. Ding
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Antonio G. DiPasquale
- College
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peter S. Dragovich
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Charles Eigenbrot
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Marie Evangelista
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Benjamin P. Fauber
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Zhenting Gao
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Hongxiu Ge
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Anna Hitz
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Qunh Ho
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Sharada S. Labadie
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kwong Wah Lai
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Wenfeng Liu
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Yajing Liu
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Chiho Li
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Shuguang Ma
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shiva Malek
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas O’Brien
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David Peterson
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Laurent Salphati
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steve Sideris
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mark Ultsch
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - BinQing Wei
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ivana Yen
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Qin Yue
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Huihui Zhang
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Aihe Zhou
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
12
|
Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nat Chem Biol 2016; 12:779-86. [PMID: 27479743 DOI: 10.1038/nchembio.2143] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Abstract
Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth in vitro and in vivo. In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK-mTOR-S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK-S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.
Collapse
|
13
|
Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment. Future Med Chem 2016; 8:713-25. [PMID: 27054686 DOI: 10.4155/fmc.16.10] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lactate dehydrogenase (LDH) inhibition is considered a worthwhile attempt in the development of innovative anticancer strategies. Unfortunately, in spite of the involvement of several research institutions and pharma-companies, the discovery of LDH inhibitors with drug-like properties seems a hardly resolvable challenge. While awaiting new advancements, in the present review we will examine other pathologic conditions characterized by increased glycolysis and LDH activity, which could potentially benefit from LDH inhibition. The rationale for targeting LDH activity in these contexts is the same justifying the LDH-based approach in anticancer therapy: because of the enzyme position at the end of glycolytic pathway, LDH inhibitors are not expected to hinder glucose metabolism of normal cells. Moreover, we will summarize the latest contributions in the discovery of enzyme inhibitors and try to glance over the reasons underlying the complexity of this research.
Collapse
|
14
|
Identification of a potent inhibitor targeting human lactate dehydrogenase A and its metabolic modulation for cancer cell line. Bioorg Med Chem Lett 2015; 26:72-5. [PMID: 26597536 DOI: 10.1016/j.bmcl.2015.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/19/2015] [Accepted: 11/09/2015] [Indexed: 01/08/2023]
Abstract
Targeting LDHA represents a promising strategy for the development of new anti-cancer agents. We report herein the identification of a potent compound as a direct LDHA inhibitor. The in vitro enzymatic assay revealed that the VS-2 had good inhibitory potency (IC50=0.25μM) to LDHA. Cytotoxic assay suggested that the VS-2 could inhibit MCF-7 cancer cell growth, with the IC50 value low to 1.54μM. The seahorse XF24 experiment validated that the VS-2 served as a modulator to reprogram MCF-7 cancer cell metabolism from glycolysis to mitochondrial respiration.
Collapse
|
15
|
Rani R, Kumar V. Recent Update on Human Lactate Dehydrogenase Enzyme 5 (hLDH5) Inhibitors: A Promising Approach for Cancer Chemotherapy. J Med Chem 2015; 59:487-96. [PMID: 26340601 DOI: 10.1021/acs.jmedchem.5b00168] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human lactate dehydrogenase (hLDH5), a glycolytic enzyme responsible for the conversion of pyruvate to lactate coupled with oxidation of NADH to NAD(+), plays a crucial role in the promotion of glycolysis in invasive tumor cells. Recently, hLDH5 has been considered a vital therapeutic target for invasive cancers. Selective inhibition of hLDH5 using small molecules holds potential prospects for the treatment of cancer and associated diseases. Consequently, significant progress has been made in the discovery of selective small-molecule hLDH5 inhibitors displaying remarkable inhibitory potencies. The purpose of this review is to discuss briefly the roles of hLDH isoforms and to compile small hLDH5 inhibitors into groups based on their chemical classes and pharmacological applications.
Collapse
Affiliation(s)
- Reshma Rani
- Department of Translational Research, National Cancer Institute-CRO , Via Franco Gallini 2, Aviano 33081, Italy
| | - Vinit Kumar
- Department of Translational Research, National Cancer Institute-CRO , Via Franco Gallini 2, Aviano 33081, Italy
| |
Collapse
|
16
|
Granchi C, Capecchi A, Del Frate G, Martinelli A, Macchia M, Minutolo F, Tuccinardi T. Development and validation of a docking-based virtual screening platform for the identification of new lactate dehydrogenase inhibitors. Molecules 2015; 20:8772-90. [PMID: 25988609 PMCID: PMC6272605 DOI: 10.3390/molecules20058772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022] Open
Abstract
The human muscle isoform of lactate dehydrogenase (hLDH5) is one of the key enzymes of the glycolytic process. It is overexpressed in metastatic cancer cells and is linked to the vitality of tumors in hypoxic conditions. With the aim of identifying new hLDH5 inhibitors, a fully automated docking-based virtual screening platform was developed by considering different protein conformations and the consensus docking strategy. In order to verify the reliability of the reported platform, a small database of about 10,000 compounds was filtered by using this method, and the top-ranked compounds were tested for their hLDH5 inhibition activity. Enzymatic assays revealed that, among the ten selected compounds, two proved to efficiently inhibit enzyme activity with IC50 values in the micromolar range. These results demonstrate the validity of the methodologies we followed, encouraging the application of larger virtual screening studies and further refinements of the platform. Furthermore, the two active compounds herein described may be considered as interesting leads for the development of new and more efficient LDH inhibitors.
Collapse
Affiliation(s)
| | - Alice Capecchi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | | | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | | |
Collapse
|
17
|
Lactate dehydrogenase inhibitors sensitize lymphoma cells to cisplatin without enhancing the drug effects on immortalized normal lymphocytes. Eur J Pharm Sci 2015; 74:95-102. [PMID: 25930121 DOI: 10.1016/j.ejps.2015.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/14/2015] [Accepted: 04/25/2015] [Indexed: 12/24/2022]
Abstract
Up-regulation of glycolysis, a well recognized hallmark of cancer cells, was also found to be predictive of poor chemotherapy response. This observation suggested the attempt of sensitizing cancer cells to conventional chemotherapeutic agents by inhibiting glucose metabolism. Lactate dehydrogenase (LDH) inhibition can be a way to hinder glycolysis of cancer cells without affecting the metabolism of normal tissues, which usually does not require this enzymatic activity. In this paper, we showed that two LDH inhibitors (oxamate and galloflavin) can increase the efficacy of cisplatin in cultured Burkitt's lymphoma (BL) cells and that this potentiating effect is not exerted in proliferating normal lymphocytes. This result was explained by the finding that in BL cells LDH inhibition induced reactive oxygen species (ROS) generation, which was not evidenced in proliferating normal lymphocytes. In BL cells treated with the association of cisplatin and LDH inhibitors, these ROS can be a further cause of DNA damage, to be added to that produced by cisplatin, leading to the failure of the response repair. At present LDH inhibitors suitable for clinical use are actively searched; our results can allow a better understanding of the potentiality of LDH as a possible target to develop innovative anticancer treatments.
Collapse
|