1
|
Jagatap V, Ahmad I, Sriram D, Kumari J, Adu DK, Ike BW, Ghai M, Ansari SA, Ansari IA, Wetchoua PO, Karpoormath R, Patel H. Isoflavonoid and Furanochromone Natural Products as Potential DNA Gyrase Inhibitors: Computational, Spectral, and Antimycobacterial Studies. ACS OMEGA 2023; 8:16228-16240. [PMID: 37179626 PMCID: PMC10173323 DOI: 10.1021/acsomega.3c00684] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
In pursuit of new antitubercular agents, we here report the antimycobacterial (H37Rv) and DNA gyrase inhibitory potential of daidzein and khellin natural products (NPs). We procured a total of 16 NPs based on their pharmacophoric similarities with known antimycobacterial compounds. The H37Rv strain of M. tuberculosis was found to be susceptible to only two out of the 16 NPs procured; specifically, daidzein and khellin each exhibited an MIC of 25 μg/mL. Moreover, daidzein and khellin inhibited the DNA gyrase enzyme with IC50 values of 0.042 and 0.822 μg/mL, respectively, compared to ciprofloxacin with an IC50 value of 0.018 μg/mL. Daidzein and khellin were found to have lower toxicity toward the vero cell line, with IC50 values of 160.81 and 300.23 μg/mL, respectively. Further, molecular docking study and MD simulation of daidzein indicated that it remained stable inside the cavity of DNA GyrB domain for 100 ns.
Collapse
Affiliation(s)
- Vilas
R. Jagatap
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur District, Dhule 425405, Maharashtra, India
| | - Iqrar Ahmad
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur District, Dhule 425405, Maharashtra, India
| | - Dharmarajan Sriram
- Department
of Pharmacy, Birla Institute of Technology
and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Jyothi Kumari
- Department
of Pharmacy, Birla Institute of Technology
and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Darko Kwabena Adu
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of
KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Blessing Wisdom Ike
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of
KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Meenu Ghai
- Discipline
of Genetics, School of Life Sciences, University
of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Siddique Akber Ansari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Irfan Aamer Ansari
- Department
of Drug Science and Technology, University
of Turin, Turin 10124, Italy
| | - Priscille Ornella
Mefotso Wetchoua
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of
KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of
KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Harun Patel
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur District, Dhule 425405, Maharashtra, India
| |
Collapse
|
2
|
Optimizing the Sunitinib for cardio-toxicity and thyro-toxicity by scaffold hopping approach. In Silico Pharmacol 2022; 10:10. [PMID: 35791431 DOI: 10.1007/s40203-022-00125-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/16/2022] [Indexed: 10/17/2022] Open
Abstract
Sunitinib is a potent anti-cancer scaffold that acts as a VEGFR-2 inhibitor. Although the scaffold exhibits potent anti-cancer activity, it is cardiotoxic and also induces hypothyroidism. The current research aims to optimize the Sunitinib for cardio-toxicity and thyro-toxicity by scaffold hopping approach using the admetSAR server. The server has optimized the physico-chemical properties of Sunitinib, which were contributing to the cardiotoxicity and thyro-toxicity. The library of the optimized compounds was further screened by the molecular docking studies and results were validated by the MD simulation and DFT analysis for VEGFR-2 inhibition. Compounds 163 and 432 exhibited the highest affinity to VEGFR-2 receptor with minimal cardiotoxicity and thyro-toxicity. These two compounds could be the starting point for the further discovery of angiogenic inhibitors. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-022-00125-1.
Collapse
|
3
|
Al Bratty M, Hakami AQ, Masmali HA, Alam MS, Alhazmi HA, Thangavel N, Najmi A, Moni SS, Haque A. The Spectrum of Thiazolidinediones against Respiratory Tract Pathogenic Bacteria: An In Vitro and In Silico Approach. Curr Pharm Biotechnol 2020; 21:1457-1469. [PMID: 32552647 DOI: 10.2174/1389201021666200618161210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Drug design strategies to develop novel broad-spectrum antibacterial agents for the treatment of respiratory tract infections that can combat bacterial resistance are currently gaining momentum. 2,4-thiazolidinedione is a structural scaffold that contains pharmacophores similar to β-lactam and non- β-lactam antibiotics. The objective of the study was to synthesize newer 3,5-Disubstituted-2,4-Thiazolidinediones (DTZDs) and subject them to in vitro antibacterial screening against bacterial pathogens. Also, we performed in silico docking of selected compounds to penicillin-binding proteins and beta-lactamases. METHODS Intermediate Schiff bases were prepared by the reaction between 2,4-thiazolidinedione and an appropriate aldehyde followed by acylation of the ring nitrogen with 3-brompropanoyl chloride resulting in DTZDs. Minimum inhibitory concentrations were determined against few bacteria infecting the respiratory tract by the broth tube dilution method. Zones of inhibitions against the bacteria were also determined using agar well diffusion technique. Molecular docking of the compounds to all types of Penicillin-Binding Proteins (PBPs) and β-lactamases was also carried out. RESULTS Compounds DTZD12 and DTZD16 exhibited broad-spectrum antibacterial activity. The minimum inhibitory concentrations of the compounds were 175μg/100μL. Measurements of the zones of inhibitions indicated that compound DTZD12 was more active than DZTD16. E. coli was the most susceptible organism. Docking results established that both the compounds were able to interact with PBPs and β-lactamases through strong hydrogen bonds, especially the unique interaction with active serine residue of the PBP for inhibition of cell wall synthesis. CONCLUSION DTZD12 and DTZD16 can be developed into antibacterial drugs for respiratory tract infections to oppose bacterial resistance, or can also be used as leads for repurposing the existing 2,4- thiazolidinediones.
Collapse
Affiliation(s)
- Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ayman Q Hakami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Hatim A Masmali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Sivakumar S Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Anzarul Haque
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
| |
Collapse
|
4
|
Druzhilovskiy DS, Rudik AV, Filimonov DA, Gloriozova TA, Lagunin AA, Dmitriev AV, Pogodin PV, Dubovskaya VI, Ivanov SM, Tarasova OA, Bezhentsev VM, Murtazalieva KA, Semin MI, Maiorov IS, Gaur AS, Sastry GN, Poroikov VV. Computational platform Way2Drug: from the prediction of biological activity to drug repurposing. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1954-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|