1
|
Abstract
PURPOSE To investigate the relationship between expression level of vesicular monoamine transporter 2 (VMAT2) and myopia, as well as the feasibility of noninvasive myopia diagnosis through imaging VMAT2 in retina by using [18F]fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ). PROCEDURES The right eyes of ten guinea pigs were deprived of vision to establish form-deprived (FD) myopia and the left eyes were untreated as the self-control eyes. The location and expression level of VMAT2 in the eyes were detected by micro-positron emission tomography (PET)/X-ray computed tomography (CT) imaging through using [18F]FP-(+)-DTBZ. Immunofluorescence staining and Western blot were used to confirm the location and expression level of VMAT2 in the eyes. The concentrations of dopamine (DA) and its metabolites including 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were also investigated by high-performance liquid chromatography. RESULTS The right eyes deprived of vision were obviously myopic (- 3.17 ± 1.33 D) after procedure, while the left eyes were hyperopic (4.60 ± 0.83 D, P < 0.0001). The main expressions of VMAT2 in the eyes were located in retina. VMAT2 was significantly reduced in the myopic retina compared to the normal one from PET/CT results (P = 0.0008), which could also be verified by Western blots (P = 0.029). The concentrations of DA, DOPAC, and HVA in the FD eyes were all significantly less than those in the control eyes (P = 0.024, P = 0.018, P = 0.008). As a role of storing and releasing DA in vesicles, VMAT2 was demonstrated positively correlating with the amounts of DA (P = 0.030), DOPAC (P = 0.038), and HVA (P = 0.025) through Pearson's correlation coefficient test. CONCLUSIONS We demonstrate that [18F]FP-(+)-DTBZ can be used to noninvasively image VMAT2 in retina. The expression level of VMAT2 in retina may act as a new biomarker for myopia diagnosis. The decreasing of VMAT2 expression level may play an important role in the development of myopia through correspondingly reducing the amount of DA in retina.
Collapse
|
2
|
Provencher BA, Eshleman AJ, Johnson RA, Shi X, Kryatova O, Nelson J, Tian J, Gonzalez M, Meltzer PC, Janowsky A. Synthesis and Discovery of Arylpiperidinylquinazolines: New Inhibitors of the Vesicular Monoamine Transporter. J Med Chem 2018; 61:9121-9131. [PMID: 30240563 DOI: 10.1021/acs.jmedchem.8b00542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Methamphetamine, a human vesicular monoamine transporter 2 (VMAT2) substrate, releases dopamine, serotonin, and norepinephrine from vesicles into the cytosol of presynaptic neurons and induces reverse transport by the monoamine transporters to increase extracellular neurotransmitters. Currently available radioligands for VMAT2 have considerable liabilities: The binding of [3H]dihydrotetrabenazine ([3H]DHTB) to a site on VMAT2 is not dependent on ATP, and [3H]reserpine binds almost irreversibly to VMAT2. Herein we demonstrate that several arylpiperidinylquinazolines (APQs) are potent inhibitors of [3H]reserpine binding at recombinant human VMAT2 expressed in HEK-293 cells. These compounds are biodiastereoselective and bioenantioselective. The lead radiolabeled APQ is unique because it binds reversibly to VMAT2 but does not bind the [3H]DHTB binding site. Furthermore, experimentation shows that several novel APQ ligands have high potency for inhibition of uptake by both HEK-VMAT2 cells and mouse striatal vesicles and may be useful tools for characterizing drug-induced effects on human VMAT2 expression and function.
Collapse
Affiliation(s)
- Brian A Provencher
- Organix Inc , 240 Salem Street , Woburn , Massachusetts 01801 , United States.,Department of Chemistry and Biochemistry , Merrimack College , North Andover , Massachusetts 01845 , United States
| | - Amy J Eshleman
- Research Service , VA Portland Health Care System , Portland , Oregon 97239 , United States.,Departments of Psychiatry and Behavioral Neuroscience , Oregon Health and Science University , Portland , Oregon 97239 , United States
| | - Robert A Johnson
- Research Service , VA Portland Health Care System , Portland , Oregon 97239 , United States
| | - Xiao Shi
- Research Service , VA Portland Health Care System , Portland , Oregon 97239 , United States.,Departments of Psychiatry and Behavioral Neuroscience , Oregon Health and Science University , Portland , Oregon 97239 , United States
| | - Olga Kryatova
- Organix Inc , 240 Salem Street , Woburn , Massachusetts 01801 , United States
| | - Jared Nelson
- Organix Inc , 240 Salem Street , Woburn , Massachusetts 01801 , United States
| | - Jianhua Tian
- Organix Inc , 240 Salem Street , Woburn , Massachusetts 01801 , United States
| | - Mario Gonzalez
- Organix Inc , 240 Salem Street , Woburn , Massachusetts 01801 , United States
| | - Peter C Meltzer
- Organix Inc , 240 Salem Street , Woburn , Massachusetts 01801 , United States
| | - Aaron Janowsky
- Research Service , VA Portland Health Care System , Portland , Oregon 97239 , United States.,Departments of Psychiatry and Behavioral Neuroscience , Oregon Health and Science University , Portland , Oregon 97239 , United States.,The Methamphetamine Abuse Research Center , Oregon Health and Science University , Portland , Oregon 97239 , United States
| |
Collapse
|
3
|
Synthesis and in vitro evaluation of water-soluble 1,4-diphenethylpiperazine analogs as novel inhibitors of the vesicular monoamine transporter-2. Bioorg Med Chem Lett 2016; 26:4441-4445. [PMID: 27524311 DOI: 10.1016/j.bmcl.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
A small library of 1,4-diphenethylpiperazine analogs was synthesized and evaluated for inhibition of [(3)H]dihydrotetrabenazine binding and [(3)H]dopamine uptake at the vesicular monoamine transporter-2 (VMAT2). Results from these studies identified three novel molecules, 6b, 6e and 9a (Ki=35nM, 48nM and 37nM, respectively) that exhibit similar potency for inhibition of VMAT2 function compared with lobelane (Ki=45nM), and importantly, have enhanced water-solubility when compared to the previously reported 1,4-diphenethylpiperidine analogs. These 1,4-diphenethylpiperazine analogs constitute promising new leads in the discovery of potential pharmacotherapeutics for treatment of methamphetamine use disorders.
Collapse
|
4
|
Nickell JR, Culver JP, Janganati V, Zheng G, Dwoskin LP, Crooks PA. 1,4-Diphenalkylpiperidines: A new scaffold for the design of potent inhibitors of the vesicular monoamine transporter-2. Bioorg Med Chem Lett 2016; 26:2997-3000. [PMID: 27212067 DOI: 10.1016/j.bmcl.2016.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 11/26/2022]
Abstract
A series of 1,4-diphenalkylpiperidine analogs were synthesized and evaluated for their affinity and inhibitory potency at the [(3)H]dihydrotetrabenazine (DTBZ) binding site and [(3)H]dopamine (DA) uptake site on the vesicular monoamine transporter-2 (VMAT2). Results revealed that translocation of the phenethyl side chains of lobelane from C2 and C6 to C1 and C4 around the central piperidine ring slightly reduces affinity and inhibitory potency at VMAT2 with respect to lobelane. However, methoxy and fluoro-substitution of either phenyl ring of these 1,4-diphenethyl analogs afforded VMAT2 inhibition comparable or higher (5-fold) affinity at the DTBZ binding and DA uptake sites relative to lobelane, whereas replacement of the 4-phenethyl moiety in these analogs with a 4-phenmethyl moiety markedly reduced affinity for the DTBZ binding and DA uptake sites by 3- and 5-fold, respectively. Among the twenty five 1,4-diphenethylpiperidine analogs evaluated, compounds containing a 4-(2-methoxyphenethyl) moiety exhibited the most potent inhibition of DTBZ binding and vesicular DA uptake. From this subgroup, analogs 8h, 8j and 8m exhibited Ki values of 9.3nM, 13nM and 13nM, respectively, for inhibition of [(3)H]DA uptake by VMAT2, and represent some of the most potent inhibitors of VMAT2 function reported thus far.
Collapse
Affiliation(s)
- Justin R Nickell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - John P Culver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Venumadhav Janganati
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|