1
|
Chène P. Direct Inhibition of the YAP : TEAD Interaction: An Unprecedented Drug Discovery Challenge. ChemMedChem 2024; 19:e202400361. [PMID: 38863297 DOI: 10.1002/cmdc.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
The Hippo pathway, which is key in organ morphogenesis, is frequently deregulated in cancer. The TEAD (TEA domain family member) transcription factors are the most distal elements of this pathway, and their activity is regulated by proteins such as YAP (Yes-associated protein). The identification of inhibitors of the YAP : TEAD interaction is one approach to develop novel anticancer drugs: the first clinical candidate (IAG933) preventing the association between these two proteins by direct competition has just been reported. The discovery of this molecule was particularly challenging because the interface between these two proteins is large (~3500 Å2 buried in complex formation) and made up of distinct contact areas. The most critical of these involves an omega-loop (Ω-loop), a secondary structure element rarely found in protein-protein interactions. This review summarizes how the knowledge gained from structure-function studies of the interaction between the Ω-loop of YAP and TEAD was used to devise the strategy to identify potent low-molecular weight compounds that show a pronounced anti-tumor effect.
Collapse
Affiliation(s)
- Patrick Chène
- Disease Area Oncology, Biomedical Research, CH-4056, Basel, Switzerland
- Novartis, WSJ 386 4.13.06, CH-4002, Basel, Switzerland
| |
Collapse
|
2
|
Yang W, Wang J, Zhao L, Chen J. Insights into the Interaction Mechanisms of Peptide and Non-Peptide Inhibitors with MDM2 Using Gaussian-Accelerated Molecular Dynamics Simulations and Deep Learning. Molecules 2024; 29:3377. [PMID: 39064955 PMCID: PMC11279683 DOI: 10.3390/molecules29143377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Inhibiting MDM2-p53 interaction is considered an efficient mode of cancer treatment. In our current study, Gaussian-accelerated molecular dynamics (GaMD), deep learning (DL), and binding free energy calculations were combined together to probe the binding mechanism of non-peptide inhibitors K23 and 0Y7 and peptide ones PDI6W and PDI to MDM2. The GaMD trajectory-based DL approach successfully identified significant functional domains, predominantly located at the helixes α2 and α2', as well as the β-strands and loops between α2 and α2'. The post-processing analysis of the GaMD simulations indicated that inhibitor binding highly influences the structural flexibility and collective motions of MDM2. Calculations of molecular mechanics-generalized Born surface area (MM-GBSA) and solvated interaction energy (SIE) not only suggest that the ranking of the calculated binding free energies is in agreement with that of the experimental results, but also verify that van der Walls interactions are the primary forces responsible for inhibitor-MDM2 binding. Our findings also indicate that peptide inhibitors yield more interaction contacts with MDM2 compared to non-peptide inhibitors. Principal component analysis (PCA) and free energy landscape (FEL) analysis indicated that the piperidinone inhibitor 0Y7 shows the most pronounced impact on the free energy profiles of MDM2, with the piperidinone inhibitor demonstrating higher fluctuation amplitudes along primary eigenvectors. The hot spots of MDM2 revealed by residue-based free energy estimation provide target sites for drug design toward MDM2. This study is expected to provide useful theoretical aid for the development of selective inhibitors of MDM2 family members.
Collapse
Affiliation(s)
- Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (L.Z.)
| | | | | | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (L.Z.)
| |
Collapse
|
3
|
Wang W, Albadari N, Du Y, Fowler JF, Sang HT, Xian W, McKeon F, Li W, Zhou J, Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev 2024; 76:414-453. [PMID: 38697854 PMCID: PMC11068841 DOI: 10.1124/pharmrev.123.001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 05/05/2024] Open
Abstract
Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Najah Albadari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Josef F Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Hannah T Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wa Xian
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Frank McKeon
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wei Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Jia Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| |
Collapse
|
4
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
5
|
Pellot Ortiz KI, Rechberger JS, Nonnenbroich LF, Daniels DJ, Sarkaria JN. MDM2 Inhibition in the Treatment of Glioblastoma: From Concept to Clinical Investigation. Biomedicines 2023; 11:1879. [PMID: 37509518 PMCID: PMC10377337 DOI: 10.3390/biomedicines11071879] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Inhibition of the interaction between MDM2 and p53 has emerged as a promising strategy for combating cancer, including the treatment of glioblastoma (GBM). Numerous MDM2 inhibitors have been developed and are currently undergoing rigorous testing for their potential in GBM therapy. Encouraging results from studies conducted in cell culture and animal models suggest that MDM2 inhibitors could effectively treat a specific subset of GBM patients with wild-type TP53 or functional p53. Combination therapy with clinically established treatment modalities such as radiation and chemotherapy offers the potential to achieve a more profound therapeutic response. Furthermore, an increasing array of other molecularly targeted therapies are being explored in combination with MDM2 inhibitors to increase the effects of individual treatments. While some MDM2 inhibitors have progressed to early phase clinical trials in GBM, their efficacy, alone and in combination, is yet to be confirmed. In this article, we present an overview of MDM2 inhibitors currently under preclinical and clinical investigation, with a specific focus on the drugs being assessed in ongoing clinical trials for GBM patients.
Collapse
Affiliation(s)
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Leo F Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Aguilar A, Wang S. Therapeutic Strategies to Activate p53. Pharmaceuticals (Basel) 2022; 16:24. [PMID: 36678521 PMCID: PMC9866379 DOI: 10.3390/ph16010024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
The p53 protein has appropriately been named the "guardian of the genome". In almost all human cancers, the powerful tumor suppressor function of p53 is compromised by a variety of mechanisms, including mutations with either loss of function or gain of function and inhibition by its negative regulators MDM2 and/or MDMX. We review herein the progress made on different therapeutic strategies for targeting p53.
Collapse
Affiliation(s)
- Angelo Aguilar
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Recent advances in the pharmacological targeting of ubiquitin-regulating enzymes in cancer. Semin Cell Dev Biol 2022; 132:213-229. [PMID: 35184940 DOI: 10.1016/j.semcdb.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
As a post-translational modification that has pivotal roles in protein degradation, ubiquitination ensures that intracellular proteins act in a precise spatial and temporal manner to regulate diversified cellular processes. Perturbation of the ubiquitin system contributes directly to the onset and progression of a wide variety of diseases, including various subtypes of cancer. This highly regulated system has been for years an active research area for drug discovery that is exemplified by several approved drugs. In this review, we will provide an update of the main breakthrough scientific discoveries that have been leading the clinical development of ubiquitin-targeting therapies in the last decade, with a special focus on E1 and E3 modulators. We will further discuss the unique challenges of identifying new potential therapeutic targets within this ubiquitous and highly complex machinery, based on available crystallographic structures, and explore chemical approaches by which these challenges might be met.
Collapse
|
8
|
Sedzro DM, Idris MO, Durojaye OA, Yekeen AA, Fadahunsi AA, Alakanse SO. Identifying Potential p53‐MDM2 Interaction Antagonists: An Integrated Approach of Pharmacophore‐Based Virtual Screening, Interaction Fingerprinting, MD Simulation and DFT Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202202380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Divine Mensah Sedzro
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230027 China
- School of Life Sciences University of Science and Technology of China Hefei Anhui 230027 China
| | - Mukhtar Oluwaseun Idris
- School of Life Sciences University of Science and Technology of China Hefei Anhui 230027 China
| | - Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230027 China
- School of Life Sciences University of Science and Technology of China Hefei Anhui 230027 China
- Department of Chemical Sciences Coal City University, Emene Enugu State Nigeria
- ACAII BIOHEALTH LTD, Ikotun Lagos State Nigeria
| | - Abeeb Abiodun Yekeen
- School of Life Sciences University of Science and Technology of China Hefei Anhui 230027 China
| | - Adeola Abraham Fadahunsi
- Graduate School of Biomedical Engineering (GSBSE) University of Maine Orono ME 04469 USA
- Department of Oncology the First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230027 China
- School of Information Science and Technology University of Science and Technology of China Hefei Anhui 230027 China
| | - Suleiman Oluwaseun Alakanse
- School of Life Sciences University of Science and Technology of China Hefei Anhui 230027 China
- Department of Biochemistry Faculty of Life Sciences University of Ilorin Ilorin Kwara State Nigeria
| |
Collapse
|
9
|
Dar’in D, Kantin G, Bunev A, Krasavin M. Facile and diastereoselective arylation of the privileged 1,4-dihydroisoquinolin-3(2 H)-one scaffold. Beilstein J Org Chem 2022; 18:1070-1078. [PMID: 36105725 PMCID: PMC9443417 DOI: 10.3762/bjoc.18.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
A practically convenient and streamlined protocol for the trans-diastereoselective introduction of an aryl substituent at position 4 of the 1,4-dihydroisoquinol-3-one (1,4-DHIQ) scaffold is presented. The protocol involves direct Regitz diazo transfer onto readily available 3(2H)-isoquinolones followed by TfOH-promoted hydroarylation by an arene molecule. Screening of the novel 1,2,4-trisubstituted 1,4-DHIQs against cancer cell lines confirmed high cytotoxicity of selected analogs, which validates this new chemotype for further investigations as anticancer cytotoxic agents.
Collapse
Affiliation(s)
- Dmitry Dar’in
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Grigory Kantin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Alexander Bunev
- Medicinal Chemistry Center, Togliatti State University, 445020 Togliatti, Russian Federation,
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
- Immanuel Kant Baltic Federal University, Kaliningrad 236016, Russian Federation
| |
Collapse
|
10
|
Zhu H, Gao H, Ji Y, Zhou Q, Du Z, Tian L, Jiang Y, Yao K, Zhou Z. Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials. J Hematol Oncol 2022; 15:91. [PMID: 35831864 PMCID: PMC9277894 DOI: 10.1186/s13045-022-01314-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022] Open
Abstract
p53, encoded by the tumor suppressor gene TP53, is one of the most important tumor suppressor factors in vivo and can be negatively regulated by MDM2 through p53–MDM2 negative feedback loop. Abnormal p53 can be observed in almost all tumors, mainly including p53 mutation and functional inactivation. Blocking MDM2 to restore p53 function is a hotspot in the development of anticancer candidates. Till now, nine MDM2 inhibitors with different structural types have entered clinical trials. However, no MDM2 inhibitor has been approved for clinical application. This review focused on the discovery, structural modification, preclinical and clinical research of the above compounds from the perspective of medicinal chemistry. Based on this, the possible defects in MDM2 inhibitors in clinical development were analyzed to suggest that the multitarget strategy or targeted degradation strategy based on MDM2 has the potential to reduce the dose-dependent hematological toxicity of MDM2 inhibitors and improve their anti-tumor activity, providing certain guidance for the development of agents targeting the p53–MDM2 interaction.
Collapse
Affiliation(s)
- Haohao Zhu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Hui Gao
- Jiangyin People's Hospital, Wuxi, 214400, Jiangsu, China
| | - Yingying Ji
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Qin Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Zhiqiang Du
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Lin Tian
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Ying Jiang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| | - Kun Yao
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| | - Zhenhe Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| |
Collapse
|
11
|
Wang S, Chen FE. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. Eur J Med Chem 2022; 236:114334. [DOI: 10.1016/j.ejmech.2022.114334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
|
12
|
Han X, Wei W, Sun Y. PROTAC Degraders with Ligands Recruiting MDM2 E3 Ubiquitin Ligase: An Updated Perspective. ACTA MATERIA MEDICA 2022; 1:244-259. [PMID: 35734447 PMCID: PMC9211018 DOI: 10.15212/amm-2022-0010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mouse double minute 2 (MDM2) is an E3 ubiquitin ligase which effectively degrades tumor suppressor p53. In the past two decades, many MDM2 inhibitors that disrupt the MDM2-p53 binding have been discovered and developed. Given that the MDM2-p53 forms auto-regulatory loop in which p53 is a substrate of MDM2 for targeted degradation, while MDM2 is a p53 target for transcriptional upregulation, these MDM2 inhibitors have limited efficacy due to p53 degradation by accumulated MDM2 upon rapid in vivo clearance of the MDM2 inhibitors. Fortunately, proteolysis targeting chimeras (PROTACs), a novel therapeutic strategy, overcome the limitations of MDM2 inhibitors. Some of MDM2 inhibitors developed in the past two decades have been used in PROTAC technology for two applications: 1) as component 1 to bind with endogenous MDM2 as a target for PROTAC-based degradation of MDM2; and 2) as component 2 to bind with endogenous MDM2 as a PROTAC E3 ligand for PROTAC-based degradation of other oncogenic proteins. In this review, we summarize current progress in the discovery and development of MDM2-based PROTAC drugs with future perspectives and challenges for their applications in effective treatment of human cancer.
Collapse
Affiliation(s)
- Xin Han
- Cancer Institute of the 2nd Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center, Zhejiang University, Hangzhou 310014, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yi Sun
- Cancer Institute of the 2nd Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center, Zhejiang University, Hangzhou 310014, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
13
|
Shi J, Zeng Z, Xu S, Cai Z, Luo Y, Fan Y, Zhu Z, Wen T, Chen X. Cross-coupling of 2-methylquinolines and in-situ activated isoquinolines: Construction of 1,2-disubstituted isoquinolinones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett 2021; 26:53. [PMID: 34911439 PMCID: PMC8903693 DOI: 10.1186/s11658-021-00293-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first MDM2 inhibitors, we have gained deeper insights into the cellular roles of MDM2 and p53. In this review, we focus on MDM2 inhibitors that bind to the p53-binding domain of MDM2 and aim to disrupt the binding of MDM2 to p53. We describe the basic mechanism of action of these MDM2 inhibitors, such as nutlin-3a, summarise the determinants of sensitivity to MDM2 inhibition from p53-dependent and p53-independent points of view and discuss the problems with innate and acquired resistance to MDM2 inhibition. Despite progress in MDM2 inhibitor design and ongoing clinical trials, their broad use in cancer treatment is not fulfilling expectations in heterogenous human cancers. We assess the MDM2 inhibitor types in clinical trials and provide an overview of possible sources of resistance to MDM2 inhibition, underlining the need for patient stratification based on these aspects to gain better clinical responses, including the use of combination therapies for personalised medicine.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Ondrej Bonczek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
| | - Pavlina Zatloukalova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Kokas-Zavadil
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Robin Fahraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 75010, Paris, France
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
15
|
Pawge G, Khatik GL. p53 regulated senescence mechanism and role of its modulators in age-related disorders. Biochem Pharmacol 2021; 190:114651. [PMID: 34118220 DOI: 10.1016/j.bcp.2021.114651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Multiple co-morbidities are associated with age, and there is a need for the broad-spectrum drug to prevent multiple regimens that may cause an adverse effect in the geriatric population. Cellular senescence is a primary mechanism for ageing in various tissues. p53, a tumor suppressor protein, plays a significant role in forming DNA damage foci and post different stress responses. DNA damage foci can be transient or persistent that can progress to DNA-SCARS inducing senescence. p53 also plays a role in apoptosis and negative regulation of SASP. Few upstream targets like FOXO4, MDM2, MDM4, USP7 control the availability of p53 for apoptosis. Hence, the senolytic therapies, modulating p53 upstream targets, can be a good approach for preventing age-related disorders. This review discusses the insights on the role of p53 in the formation of DNA-SCARS, various upstream target proteins, and pathways involved in p53 regulation. Further, the review aimed to include recently discovered small molecules acting on these upstream targets, and those can be modified using medicinal chemistry approaches to give successful senotherapeutics.
Collapse
Affiliation(s)
- Girija Pawge
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226301, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226301, India.
| |
Collapse
|
16
|
Chukwuemeka PO, Umar HI, Iwaloye O, Oretade OM, Olowosoke CB, Elabiyi MO, Igbe FO, Oretade OJ, Eigbe JO, Adeojo FJ. Targeting p53-MDM2 interactions to identify small molecule inhibitors for cancer therapy: beyond "Failure to rescue". J Biomol Struct Dyn 2021; 40:9158-9176. [PMID: 33988074 DOI: 10.1080/07391102.2021.1924267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At present, disrupting p53-MDM2 interactions through small molecule ligands is a promising approach to safe treatment and management of human cancer. Tumor cells unlike the normal cells, are rapidly evolving affecting the efficacy of many approved anti-cancer agents due to drug resistance. Therefore, identifying a potential anticancer compound is crucial. Pharmacophore based virtual screening, followed by molecular docking, ADMET evaluation, and molecular dynamics studies against MDM2 protein was investigated to identify potential ligands that may act as inhibitors. The model (AHRR_1) with survival score (4.176) was selected among the top ranked generated Pharmacophore hypothesis. Validation of the model hypothesis by an external dataset of actives and inactive compounds produced significant validation attributes including; AUC = 0.85, BEDROC = 0.56 at α = 20.0, RIE = 8.18, AUAC = 0.88, and EF of 6.2 at the top 2% of the dataset. The model was use for screening the ZINC database, and the top 1375 hits satisfying the model hypothesis were subjected to molecular docking studies to understand the molecular and structural basis of selectivity of compounds for MDM2 protein. A sub-set of 25 compounds with binding energy lower than the reference inhibitors were evaluated for pharmacokinetic properties. Four compounds (ZINC02639178, ZINC06752762, ZINC38933175, and ZINC77969611) showed the most desired pharmacokinetic profile. Lastly, investigation of the dynamic behaviour of leads-protein complexes through MD simulation showed similar RMSD, RMSF, and H-bond occupancy profile compared to a reference inhibitor, suggesting stability throughout the simulation time. However, ZINC02639178 was found to satisfy the molecular enumeration the most compared to the other three leads. It may emerge as potential treatment option after extensive experimental studies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prosper Obed Chukwuemeka
- Department of Biotechnology, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| | - Haruna Isiyaku Umar
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular biology unit, Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| | - Oluwaseyi Matthew Oretade
- Department of Biotechnology, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| | | | - Michael Omoniyi Elabiyi
- Department of Microbiology, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| | - Festus Omotere Igbe
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| | - Oyeyemi Janet Oretade
- Department of Physiology, College of Health Science (CHS), Osun State University, Osogbo, Nigeria
| | - Joy Oseme Eigbe
- Department of Biomedical Technology, School of Health and Health Technology (SHHT), Federal University of Technology Akure, Akure, Nigeria
| | - Funmilayo Janet Adeojo
- Department of Biotechnology, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| |
Collapse
|
17
|
Tan YS, Mhoumadi Y, Verma CS. Roles of computational modelling in understanding p53 structure, biology, and its therapeutic targeting. J Mol Cell Biol 2020; 11:306-316. [PMID: 30726928 PMCID: PMC6487789 DOI: 10.1093/jmcb/mjz009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
The transcription factor p53 plays pivotal roles in numerous biological processes, including the suppression of tumours. The rich availability of biophysical data aimed at understanding its structure–function relationships since the 1990s has enabled the application of a variety of computational modelling techniques towards the establishment of mechanistic models. Together they have provided deep insights into the structure, mechanics, energetics, and dynamics of p53. In parallel, the observation that mutations in p53 or changes in its associated pathways characterize several human cancers has resulted in a race to develop therapeutic modulators of p53, some of which have entered clinical trials. This review describes how computational modelling has played key roles in understanding structural-dynamic aspects of p53, formulating hypotheses about domains that are beyond current experimental investigations, and the development of therapeutic molecules that target the p53 pathway.
Collapse
Affiliation(s)
- Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore
| | - Yasmina Mhoumadi
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| |
Collapse
|
18
|
Patel KR, Patel HD. p53: An Attractive Therapeutic Target for Cancer. Curr Med Chem 2020; 27:3706-3734. [PMID: 31223076 DOI: 10.2174/1573406415666190621094704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a leading cause of death worldwide. It initiates when cell cycle regulatory genes lose their function either by environmental and/or by internal factors. Tumor suppressor protein p53, known as "Guardian of genome", plays a central role in maintaining genomic stability of the cell. Mutation of TP53 is documented in more than 50% of human cancers, usually by overexpression of negative regulator protein MDM2. Hence, reactivation of p53 by blocking the protein-protein interaction between the murine double minute 2 (MDM2) and the tumor suppressor protein p53 has become the most promising therapeutic strategy in oncology. Several classes of small molecules have been identified as potent, selective and efficient p53-MDM2 inhibitors. Herein, we review the druggability of p53-MDM2 inhibitors and their optimization approaches as well as clinical candidates categorized by scaffold type.
Collapse
Affiliation(s)
- Krupa R Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Hitesh D Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
19
|
Konopleva M, Martinelli G, Daver N, Papayannidis C, Wei A, Higgins B, Ott M, Mascarenhas J, Andreeff M. MDM2 inhibition: an important step forward in cancer therapy. Leukemia 2020; 34:2858-2874. [PMID: 32651541 DOI: 10.1038/s41375-020-0949-z] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
Targeting the interaction between tumor suppressor p53 and the E3 ligase MDM2 represents an attractive treatment approach for cancers with wild-type or functional TP53. Indeed, several small molecules have been developed and evaluated in various malignancies. We provide an overview of MDM2 inhibitors under preclinical and clinical investigation, with a focus on molecules with ongoing clinical trials, as indicated by ClinicalTrials.gov . Because preclinical and clinical exploration of combination strategies is underway, data supporting these combinations are also described. We identified the following molecules for inclusion in this review: RG7112 (RO5045337), idasanutlin (RG7388), AMG-232 (KRT-232), APG-115, BI-907828, CGM097, siremadlin (HDM201), and milademetan (DS-3032b). Information about each MDM2 inhibitor was collected from major congress records and PubMed using the following search terms: each molecule name, "MDM2"and "HDM2." Only congress records were limited by date (January 1, 2012-March 6, 2020). Special attention was given to available data in hematologic malignancies; however, available safety data in any indication are reported. Overall, targeting MDM2 is a promising treatment strategy, as evidenced by the increasing number of MDM2 inhibitors entering the clinic. Additional clinical investigation is needed to further elucidate the role of MDM2 inhibitors in the treatment of human cancers.
Collapse
Affiliation(s)
- Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRST IRCCS, Meldola, FC, Italy
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Papayannidis
- Institute of Hematology "L. and A". Seràgnoli, University Hospital S. Orsola-Malpighi, Bologna, Italy
| | - Andrew Wei
- The Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | | | - Marion Ott
- F. Hoffmann-La Roche, Basel, Switzerland
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Singh N, Li W. Absolute Binding Free Energy Calculations for Highly Flexible Protein MDM2 and Its Inhibitors. Int J Mol Sci 2020; 21:ijms21134765. [PMID: 32635537 PMCID: PMC7369993 DOI: 10.3390/ijms21134765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/16/2023] Open
Abstract
Reliable prediction of binding affinities for ligand-receptor complex has been the primary goal of a structure-based drug design process. In this respect, alchemical methods are evolving as a popular choice to predict the binding affinities for biomolecular complexes. However, the highly flexible protein-ligand systems pose a challenge to the accuracy of binding free energy calculations mostly due to insufficient sampling. Herein, integrated computational protocol combining free energy perturbation based absolute binding free energy calculation with free energy landscape method was proposed for improved prediction of binding free energy for flexible protein-ligand complexes. The proposed method is applied to the dataset of various classes of p53-MDM2 (murine double minute 2) inhibitors. The absolute binding free energy calculations for MDMX (murine double minute X) resulted in a mean absolute error value of 0.816 kcal/mol while it is 3.08 kcal/mol for MDM2, a highly flexible protein compared to MDMX. With the integration of the free energy landscape method, the mean absolute error for MDM2 is improved to 1.95 kcal/mol.
Collapse
Affiliation(s)
- Nidhi Singh
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
- Correspondence: ; Tel.: +86-755-2694-2336
| |
Collapse
|
21
|
Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Acta Pharm Sin B 2020; 10:1253-1278. [PMID: 32874827 PMCID: PMC7452049 DOI: 10.1016/j.apsb.2020.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/31/2019] [Accepted: 12/26/2019] [Indexed: 12/26/2022] Open
Abstract
Blocking the MDM2/X–P53 protein–protein interaction has been widely recognized as an attractive therapeutic strategy for the treatment of cancers. Numerous small-molecule MDM2 inhibitors have been reported since the release of the structure of the MDM2–P53 interaction in 1996, SAR405838, NVP-CGM097, MK-8242, RG7112, RG7388, DS-3032b, and AMG232 currently undergo clinical evaluation for cancer therapy. This review is intended to provide a comprehensive and updated overview of MDM2 inhibitors and proteolysis targeting chimera (PROTAC) degraders with a particular focus on how these inhibitors or degraders are identified from starting points, strategies employed, structure–activity relationship (SAR) studies, binding modes or co-crystal structures, biochemical data, mechanistic studies, and preclinical/clinical studies. Moreover, we briefly discuss the challenges of designing MDM2/X inhibitors for cancer therapy such as dual MDM2/X inhibition, acquired resistance and toxicity of P53 activation as well as future directions.
Collapse
|
22
|
Blaquiere N, Villemure E, Staben ST. Medicinal Chemistry of Inhibiting RING-Type E3 Ubiquitin Ligases. J Med Chem 2020; 63:7957-7985. [PMID: 32142281 DOI: 10.1021/acs.jmedchem.9b01451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ubiquitin proteasome system (UPS) presents many opportunities for pharmacological intervention. Key players in the UPS are E3 ubiquitin ligases, responsible for conjugation of ubiquitin to specific cognate substrates. Numbering more than 600 members, these ligases represent the most selective way to intervene within this physiologically important system. This Perspective highlights some of the dedicated medicinal chemistry efforts directed at inhibiting the function of specific single-protein and multicomponent RING-type E3 ubiquitin ligases. We present opportunities and challenges associated with targeting this important class of enzymes.
Collapse
Affiliation(s)
- Nicole Blaquiere
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Elisia Villemure
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven T Staben
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
23
|
Beloglazkina A, Zyk N, Majouga A, Beloglazkina E. Recent Small-Molecule Inhibitors of the p53-MDM2 Protein-Protein Interaction. Molecules 2020; 25:molecules25051211. [PMID: 32156064 PMCID: PMC7179467 DOI: 10.3390/molecules25051211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
This review presents the last decade of studies on the synthesis of various types of small-molecule inhibitors of the p53- Mouse double minute 2 homolog (MDM2) protein-protein interaction. The main focus is placed on synthetic approaches to such molecules, their cytotoxicity, and MDM2 binding characteristics.
Collapse
|
24
|
Miller JJ, Gaiddon C, Storr T. A balancing act: using small molecules for therapeutic intervention of the p53 pathway in cancer. Chem Soc Rev 2020; 49:6995-7014. [DOI: 10.1039/d0cs00163e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small molecules targeting various aspects of the p53 protein pathway have shown significant promise in the treatment of a number of cancer types.
Collapse
Affiliation(s)
| | - Christian Gaiddon
- Inserm UMR_S 1113
- Université de Strasbourg
- Molecular Mechanisms of Stress Response and Pathologies
- ITI InnoVec
- Strasbourg
| | - Tim Storr
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| |
Collapse
|
25
|
Kallen J, Izaac A, Chau S, Wirth E, Schoepfer J, Mah R, Schlapbach A, Stutz S, Vaupel A, Guagnano V, Masuya K, Stachyra TM, Salem B, Chene P, Gessier F, Holzer P, Furet P. Structural States of Hdm2 and HdmX: X-ray Elucidation of Adaptations and Binding Interactions for Different Chemical Compound Classes. ChemMedChem 2019; 14:1305-1314. [PMID: 31066983 DOI: 10.1002/cmdc.201900201] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 01/02/2023]
Abstract
Hdm2 (human MDM2, human double minute 2 homologue) counteracts p53 function by direct binding to p53 and by ubiquitin-dependent p53 protein degradation. Activation of p53 by inhibitors of the p53-Hdm2 interaction is being pursued as a therapeutic strategy in p53 wild-type cancers. In addition, HdmX (human MDMX, human MDM4) was also identified as an important therapeutic target to efficiently reactivate p53, and it is likely that dual inhibition of Hdm2 and HdmX is beneficial. Herein we report four new X-ray structures for Hdm2 and five new X-ray structures for HdmX complexes, involving different classes of synthetic compounds (including the worldwide highest resolutions for Hdm2 and HdmX, at 1.13 and 1.20 Å, respectively). We also reveal the key additive 18-crown-ether, which we discovered to enable HdmX crystallization and show its stabilization of various Lys residues. In addition, we report the previously unpublished details of X-ray structure determinations for eight further Hdm2 complexes, including the clinical trial compounds NVP-CGM097 and NVP-HDM201. An analysis of all compound binding modes reveals new and deepened insight into the possible adaptations and structural states of Hdm2 (e.g., flip of F55, flip of Y67, reorientation of H96) and HdmX (e.g., flip of H55, dimer induction), enabling key binding interactions for different compound classes. To facilitate comparisons, we used the same numbering for Hdm2 (as in Q00987) and HdmX (as in O15151, but minus 1). Taken together, these structural insights should prove useful for the design and optimization of further selective and/or dual Hdm2/HdmX inhibitors.
Collapse
Affiliation(s)
- Joerg Kallen
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Aude Izaac
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Suzanne Chau
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Emmanuelle Wirth
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Joseph Schoepfer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Robert Mah
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Achim Schlapbach
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Stefan Stutz
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Andrea Vaupel
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Vito Guagnano
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | | | - Therese-Marie Stachyra
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Bahaa Salem
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Patrick Chene
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Francois Gessier
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Philipp Holzer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| | - Pascal Furet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4002, Basel, Switzerland
| |
Collapse
|
26
|
Atatreh N, Ghattas MA, Bardaweel SK, Rawashdeh SA, Sorkhy MA. Identification of new inhibitors of Mdm2-p53 interaction via pharmacophore and structure-based virtual screening. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3741-3752. [PMID: 30464405 PMCID: PMC6223338 DOI: 10.2147/dddt.s182444] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The tumor suppressor protein p53 plays an important role in preventing tumor formation and progression through its involvement in cell division control and initiation of apoptosis. Mdm2 protein controls the activity of p53 protein through working as ubiquitin E3 ligase promoting p53 degradation through the proteasome degradation pathway. Inhibitors for Mdm2-p53 interaction have restored the activity of p53 protein and induced cancer fighting properties in the cell. Purpose The objective of this study is to use computer-aided drug discovery techniques to search for new Mdm2-p53 interaction inhibitors. Methods A set of pharmacophoric features were created based on a standard Mdm2 inhibitor and this was used to screen a commercial drug-like ligand library; then potential inhibitors were docked and ranked in a multi-step protocol using GLIDE. Top ranked ligands from docking were evaluated for their inhibition activity of Mdm2-p53 interaction using ELISA testing. Results Several compounds showed inhibition activity at the submicromolar level, which is comparable to the standard inhibitor Nutlin-3a. Furthermore, the discovered inhibitors were evaluated for their anticancer activities against different breast cancer cell lines, and they showed an interesting inhibition pattern. Conclusion The reported inhibitors can represent a starting point for further SAR studies in the future and can help in the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Noor Atatreh
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University of Science and Technology, Al Ain, Abu Dhabi, United Arab Emirates, ;
| | - Mohammad A Ghattas
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University of Science and Technology, Al Ain, Abu Dhabi, United Arab Emirates, ;
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Sara Al Rawashdeh
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University of Science and Technology, Al Ain, Abu Dhabi, United Arab Emirates, ;
| | - Mohammad Al Sorkhy
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University of Science and Technology, Al Ain, Abu Dhabi, United Arab Emirates, ;
| |
Collapse
|
27
|
Liao G, Yang D, Ma L, Li W, Hu L, Zeng L, Wu P, Duan L, Liu Z. The development of piperidinones as potent MDM2-P53 protein-protein interaction inhibitors for cancer therapy. Eur J Med Chem 2018; 159:1-9. [DOI: 10.1016/j.ejmech.2018.09.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 11/29/2022]
|
28
|
Niazi S, Purohit M, Niazi JH. Role of p53 circuitry in tumorigenesis: A brief review. Eur J Med Chem 2018; 158:7-24. [PMID: 30199707 DOI: 10.1016/j.ejmech.2018.08.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023]
Abstract
Maintenance of genome integrity under the stressed condition is paramount for normal functioning of cells in the multicellular organisms. Cells are programmed to protect their genome through specialized adaptive mechanisms which will help decide their fate under stressed conditions. These mechanisms are the outcome of activation of the intricate circuitries that are regulated by the p53 master protein. In this paper, we provided a comprehensive review on p53, p53 homologues and their isoforms, including a description about the ubiquitin-proteasome system emphasizing its role in p53 regulation. p53 induced E3(Ub)-ligases are an integral part of the ubiquitin-proteasome system. This review outlines the roles of important E3(Ub)-ligases and their splice variants in maintaining cellular p53 protein homeostasis. It also covers up-to-date and relevant information on small molecule Mdm2 inhibitors originated from different organizations. The review ends with a discussion on future prospects and investigation directives for the development of next-generation modulators as p53 therapeutics.
Collapse
Affiliation(s)
- Sarfaraj Niazi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Madhusudan Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Javed H Niazi
- Sabanci University SUNUM Nanotechnology Research Centre, TR-34956, Istanbul, Turkey
| |
Collapse
|
29
|
Chen J, Wang J, Pang L, Zhu W. Inhibiting mechanism of small molecule toward the p53-MDM2 interaction: A molecular dynamic exploration. Chem Biol Drug Des 2018; 92:1763-1777. [DOI: 10.1111/cbdd.13345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Jianzhong Chen
- School of Science; Shandong Jiaotong University; Jinan China
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Jinan Wang
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Laixue Pang
- School of Science; Shandong Jiaotong University; Jinan China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| |
Collapse
|
30
|
Xu D, Bum-Erdene K, Si Y, Zhou D, Ghozayel MK, Meroueh SO. Mimicking Intermolecular Interactions of Tight Protein-Protein Complexes for Small-Molecule Antagonists. ChemMedChem 2017; 12:1794-1809. [PMID: 28960868 DOI: 10.1002/cmdc.201700572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 01/12/2023]
Abstract
Tight protein-protein interactions (Kd <100 nm) that occur over a large binding interface (>1000 Å2 ) are highly challenging to disrupt with small molecules. Historically, the design of small molecules to inhibit protein-protein interactions has focused on mimicking the position of interface protein ligand side chains. Here, we explore mimicry of the pairwise intermolecular interactions of the native protein ligand with residues of the protein receptor to enrich commercial libraries for small-molecule inhibitors of tight protein-protein interactions. We use the high-affinity interaction (Kd =1 nm) between the urokinase receptor (uPAR) and its ligand urokinase (uPA) to test our methods. We introduce three methods for rank-ordering small molecules docked to uPAR: 1) a new fingerprint approach that represents uPA's pairwise interaction energies with uPAR residues; 2) a pharmacophore approach to identify small molecules that mimic the position of uPA interface residues; and 3) a combined fingerprint and pharmacophore approach. Our work led to small molecules with novel chemotypes that inhibited a tight uPAR⋅uPA protein-protein interaction with single-digit micromolar IC50 values. We also report the extensive work that identified several of the hits as either lacking stability, thiol reactive, or redox active. This work suggests that mimicking the binding profile of the native ligand and the position of interface residues can be an effective strategy to enrich commercial libraries for small-molecule inhibitors of tight protein-protein interactions.
Collapse
Affiliation(s)
- David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN, 46202, USA
| | - Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 4023, Indianapolis, IN, 46202, USA
| | - Yubing Si
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Donghui Zhou
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 4023, Indianapolis, IN, 46202, USA
| | - Mona K Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 4023, Indianapolis, IN, 46202, USA
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 4023, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
31
|
Esposito MR, Aveic S, Seydel A, Tonini GP. Neuroblastoma treatment in the post-genomic era. J Biomed Sci 2017; 24:14. [PMID: 28178969 PMCID: PMC5299732 DOI: 10.1186/s12929-017-0319-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is an embryonic malignancy of early childhood originating from neural crest cells and showing heterogeneous biological, morphological, genetic and clinical characteristics. The correct stratification of neuroblastoma patients within risk groups (low, intermediate, high and ultra-high) is critical for the adequate treatment of the patients. High-throughput technologies in the Omics disciplines are leading to significant insights into the molecular pathogenesis of neuroblastoma. Nonetheless, further study of Omics data is necessary to better characterise neuroblastoma tumour biology. In the present review, we report an update of compounds that are used in preclinical tests and/or in Phase I-II trials for neuroblastoma. Furthermore, we recapitulate a number of compounds targeting proteins associated to neuroblastoma: MYCN (direct and indirect inhibitors) and downstream targets, Trk, ALK and its downstream signalling pathways. In particular, for the latter, given the frequency of ALK gene deregulation in neuroblastoma patients, we discuss on second-generation ALK inhibitors in preclinical or clinical phases developed for the treatment of neuroblastoma patients resistant to crizotinib. We summarise how Omics drive clinical trials for neuroblastoma treatment and how much the research of biological targets is useful for personalised medicine. Finally, we give an overview of the most recent druggable targets selected by Omics investigation and discuss how the Omics results can provide us additional advantages for overcoming tumour drug resistance.
Collapse
Affiliation(s)
- Maria Rosaria Esposito
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy.
| | - Sanja Aveic
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy
| | - Anke Seydel
- Department of Biology, University of Padua, Padua, Italy
| | - Gian Paolo Tonini
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy
| |
Collapse
|
32
|
Therasa Alphonsa A, Loganathan C, Athavan Alias Anand S, Kabilan S. Synthesis, spectroscopic investigations (FT-IR, NMR, UV–Vis, and TD-DFT), and molecular docking of (E)-1-(benzo[d][1, 3]dioxol-6-yl)-3-(6-methoxynaphthalen-2-yl)prop-2-en-1-one. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
D'Alessandro PL, Buschmann N, Kaufmann M, Furet P, Baysang F, Brunner R, Marzinzik A, Vorherr T, Stachyra TM, Ottl J, Lizos DE, Cobos-Correa A. Bioorthogonal Probes for the Study of MDM2-p53 Inhibitors in Cells and Development of High-Content Screening Assays for Drug Discovery. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pier Luca D'Alessandro
- Global Discovery Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Nicole Buschmann
- Center for Proteomic Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Markus Kaufmann
- Center for Proteomic Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Pascal Furet
- Global Discovery Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Frederic Baysang
- Oncology; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Reto Brunner
- Center for Proteomic Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Andreas Marzinzik
- Global Discovery Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Thomas Vorherr
- Global Discovery Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | | | - Johannes Ottl
- Center for Proteomic Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Dimitrios E. Lizos
- Global Discovery Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Amanda Cobos-Correa
- Center for Proteomic Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| |
Collapse
|
34
|
D'Alessandro PL, Buschmann N, Kaufmann M, Furet P, Baysang F, Brunner R, Marzinzik A, Vorherr T, Stachyra TM, Ottl J, Lizos DE, Cobos-Correa A. Bioorthogonal Probes for the Study of MDM2-p53 Inhibitors in Cells and Development of High-Content Screening Assays for Drug Discovery. Angew Chem Int Ed Engl 2016; 55:16026-16030. [DOI: 10.1002/anie.201608568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/10/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Pier Luca D'Alessandro
- Global Discovery Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Nicole Buschmann
- Center for Proteomic Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Markus Kaufmann
- Center for Proteomic Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Pascal Furet
- Global Discovery Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Frederic Baysang
- Oncology; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Reto Brunner
- Center for Proteomic Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Andreas Marzinzik
- Global Discovery Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Thomas Vorherr
- Global Discovery Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | | | - Johannes Ottl
- Center for Proteomic Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Dimitrios E. Lizos
- Global Discovery Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| | - Amanda Cobos-Correa
- Center for Proteomic Chemistry; Novartis Institutes of Biomedical Research; Novartis Campus Basel Switzerland
| |
Collapse
|
35
|
Ferreira LG, Oliva G, Andricopulo AD. Protein-protein interaction inhibitors: advances in anticancer drug design. Expert Opin Drug Discov 2016; 11:957-68. [DOI: 10.1080/17460441.2016.1223038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Furet P, Masuya K, Kallen J, Stachyra-Valat T, Ruetz S, Guagnano V, Holzer P, Mah R, Stutz S, Vaupel A, Chène P, Jeay S, Schlapbach A. Discovery of a novel class of highly potent inhibitors of the p53-MDM2 interaction by structure-based design starting from a conformational argument. Bioorg Med Chem Lett 2016; 26:4837-4841. [PMID: 27542305 DOI: 10.1016/j.bmcl.2016.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 11/27/2022]
Abstract
The p53-MDM2 interaction is an anticancer drug target under investigation in the clinic. Our compound NVP-CGM097 is one of the small molecule inhibitors of this protein-protein interaction currently evaluated in cancer patients. As part of our effort to identify new classes of p53-MDM2 inhibitors that could lead to additional clinical candidates, we report here the design of highly potent inhibitors having a pyrazolopyrrolidinone core structure. The conception of these new inhibitors originated in a consideration on the MDM2 bound conformation of the dihydroisoquinolinone class of inhibitors to which NVP-CGM097 belongs. This work forms the foundation of the discovery of HDM201, a second generation p53-MDM2 inhibitor that recently entered phase I clinical trial.
Collapse
Affiliation(s)
- Pascal Furet
- Novartis Institutes for BioMedical Research, WKL-136.P.12, CH-4002 Basel, Switzerland.
| | - Keiichi Masuya
- Novartis Institutes for BioMedical Research, WKL-136.P.12, CH-4002 Basel, Switzerland
| | - Joerg Kallen
- Novartis Institutes for BioMedical Research, WKL-136.P.12, CH-4002 Basel, Switzerland
| | | | - Stephan Ruetz
- Novartis Institutes for BioMedical Research, WKL-136.P.12, CH-4002 Basel, Switzerland
| | - Vito Guagnano
- Novartis Institutes for BioMedical Research, WKL-136.P.12, CH-4002 Basel, Switzerland
| | - Philipp Holzer
- Novartis Institutes for BioMedical Research, WKL-136.P.12, CH-4002 Basel, Switzerland
| | - Robert Mah
- Novartis Institutes for BioMedical Research, WKL-136.P.12, CH-4002 Basel, Switzerland
| | - Stefan Stutz
- Novartis Institutes for BioMedical Research, WKL-136.P.12, CH-4002 Basel, Switzerland
| | - Andrea Vaupel
- Novartis Institutes for BioMedical Research, WKL-136.P.12, CH-4002 Basel, Switzerland
| | - Patrick Chène
- Novartis Institutes for BioMedical Research, WKL-136.P.12, CH-4002 Basel, Switzerland
| | - Sébastien Jeay
- Novartis Institutes for BioMedical Research, WKL-136.P.12, CH-4002 Basel, Switzerland
| | - Achim Schlapbach
- Novartis Institutes for BioMedical Research, WKL-136.P.12, CH-4002 Basel, Switzerland
| |
Collapse
|
37
|
Lemos A, Leão M, Soares J, Palmeira A, Pinto M, Saraiva L, Sousa ME. Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction. Med Res Rev 2016; 36:789-844. [PMID: 27302609 DOI: 10.1002/med.21393] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/16/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
The growth inhibitory activity of p53 tumor suppressor is tightly regulated by interaction with two negative regulatory proteins, murine double minute 2 (MDM2) and X (MDMX), which are overexpressed in about half of all human tumors. The elucidation of crystallographic structures of MDM2/MDMX complexes with p53 has been pivotal for the identification of several classes of inhibitors of the p53-MDM2/MDMX interaction. The present review provides in silico strategies and screening approaches used in drug discovery as well as an overview of the most relevant classes of small-molecule inhibitors of the p53-MDM2/MDMX interaction, their progress in pipeline, and highlights particularities of each class of inhibitors. Most of the progress made with high-throughput screening has led to the development of inhibitors belonging to the cis-imidazoline, piperidinone, and spiro-oxindole series. However, novel potent and selective classes of inhibitors of the p53-MDM2 interaction with promising antitumor activity are emerging. Even with the discovery of the 3D structure of complex p53-MDMX, only two small molecules were reported as selective p53-MDMX antagonists, WK298 and SJ-172550. Dual inhibition of the p53-MDM2/MDMX interaction has shown to be an alternative approach since it results in full activation of the p53-dependent pathway. The knowledge of structural requirements crucial to the development of small-molecule inhibitors of the p53-MDMs interactions has enabled the identification of novel antitumor agents with improved in vivo efficacy.
Collapse
Affiliation(s)
- Agostinho Lemos
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Mariana Leão
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana Soares
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua de Bragas, 289, 4050-123, Porto, Portugal
| | - Lucília Saraiva
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua de Bragas, 289, 4050-123, Porto, Portugal
| |
Collapse
|
38
|
Chemical Variations on the p53 Reactivation Theme. Pharmaceuticals (Basel) 2016; 9:ph9020025. [PMID: 27187415 PMCID: PMC4932543 DOI: 10.3390/ph9020025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/31/2023] Open
Abstract
Among the tumor suppressor genes, p53 is one of the most studied. It is widely regarded as the "guardian of the genome", playing a major role in carcinogenesis. In fact, direct inactivation of the TP53 gene occurs in more than 50% of malignancies, and in tumors that retain wild-type p53 status, its function is usually inactivated by overexpression of negative regulators (e.g., MDM2 and MDMX). Hence, restoring p53 function in cancer cells represents a valuable anticancer approach. In this review, we will present an updated overview of the most relevant small molecules developed to restore p53 function in cancer cells through inhibition of the p53-MDMs interaction, or direct targeting of wild-type p53 or mutated p53. In addition, optimization approaches used for the development of small molecules that have entered clinical trials will be presented.
Collapse
|
39
|
Estrada-Ortiz N, Neochoritis CG, Dömling A. How To Design a Successful p53-MDM2/X Interaction Inhibitor: A Thorough Overview Based on Crystal Structures. ChemMedChem 2016; 11:757-72. [PMID: 26676832 PMCID: PMC4838565 DOI: 10.1002/cmdc.201500487] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/23/2015] [Indexed: 01/10/2023]
Abstract
A recent therapeutic strategy in oncology is based on blocking the protein-protein interaction between the murine double minute (MDM) homologues MDM2/X and the tumor-suppressor protein p53. Inhibiting the binding between wild-type (WT) p53 and its negative regulators MDM2 and/or MDMX has become an important target in oncology to restore the antitumor activity of p53, the so-called guardian of our genome. Interestingly, based on the multiple disclosed compound classes and structural analysis of small-molecule-MDM2 adducts, the p53-MDM2 complex is perhaps the best studied and most targeted protein-protein interaction. Several classes of small molecules have been identified as potent, selective, and efficient inhibitors of the p53-MDM2/X interaction, and many co-crystal structures with the protein are available. Herein we review the properties as well as preclinical and clinical studies of these small molecules and peptides, categorized by scaffold type. A particular emphasis is made on crystallographic structures and the observed binding modes of these compounds, including conserved water molecules present.
Collapse
Affiliation(s)
- Natalia Estrada-Ortiz
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD, Groningen, The Netherlands
| | - Constantinos G Neochoritis
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD, Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD, Groningen, The Netherlands.
| |
Collapse
|
40
|
Affiliation(s)
- Nagi G Ayad
- The Center for Therapeutic Innovation, The Miami Project to Cure Paralysis, Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Jae K Lee
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami, Miami, FL, USA
| | - Vance P Lemmon
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami, Miami, FL, USA
| |
Collapse
|
41
|
Holzer P, Masuya K, Furet P, Kallen J, Valat-Stachyra T, Ferretti S, Berghausen J, Bouisset-Leonard M, Buschmann N, Pissot-Soldermann C, Rynn C, Ruetz S, Stutz S, Chène P, Jeay S, Gessier F. Discovery of a Dihydroisoquinolinone Derivative (NVP-CGM097): A Highly Potent and Selective MDM2 Inhibitor Undergoing Phase 1 Clinical Trials in p53wt Tumors. J Med Chem 2015; 58:6348-58. [PMID: 26181851 DOI: 10.1021/acs.jmedchem.5b00810] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a result of our efforts to discover novel p53:MDM2 protein-protein interaction inhibitors useful for treating cancer, the potent and selective MDM2 inhibitor NVP-CGM097 (1) with an excellent in vivo profile was selected as a clinical candidate and is currently in phase 1 clinical development. This article provides an overview of the discovery of this new clinical p53:MDM2 inhibitor. The following aspects are addressed: mechanism of action, scientific rationale, binding mode, medicinal chemistry, pharmacokinetic and pharmacodynamic properties, and in vivo pharmacology/toxicology in preclinical species.
Collapse
Affiliation(s)
- Philipp Holzer
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| | - Keiichi Masuya
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| | - Pascal Furet
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| | - Joerg Kallen
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| | | | - Stéphane Ferretti
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| | - Joerg Berghausen
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| | | | - Nicole Buschmann
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| | | | - Caroline Rynn
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| | - Stephan Ruetz
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| | - Stefan Stutz
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| | - Patrick Chène
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| | - Sébastien Jeay
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| | - Francois Gessier
- Novartis Institutes for BioMedical Research , 4002 Basel, Switzerland
| |
Collapse
|