1
|
Ragab AE, Badawy ET, Aboukhatwa SM, Abdel-Aziz MM, Kabbash A, Abo Elseoud KA. Isonicotinic acid N-oxide, from isoniazid biotransformation by Aspergillus niger, as an InhA inhibitor antituberculous agent against multiple and extensively resistant strains supported by in silico docking and ADME prediction. Nat Prod Res 2022; 37:1687-1692. [PMID: 35876096 DOI: 10.1080/14786419.2022.2103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Biotransformation of isoniazid produced isonicotinic acid (1), isonicotinic acid N-oxide (2), and isonicotinamide (3) which were isolated by column chromatography using silica gel and Sephadex LH 20 and elucidated using various spectroscopies. This is the first report for isolation of 2. Antituberculosis activity was evaluated against Mycobacterium tuberculosis strains: drug sensitive (DS), multiple drug resistant (MDR) and extensively drug resistant (XDR). 1-3 and isoniazid showed MICs of 63.49, 0.22, 15.98 and 0.88 µM, respectively, against the DS strain. For the MDR strain, 2 and 3 exhibited MICs of 28.06 and > 1000 µM, respectively, while 1 was inactive. Moreover, 2 had an MIC of 56.19 µM against XDR strain, while 1 and 3 were inactive. Docking simulation using enoyl ACP reductase (InhA) revealed favorable protein-ligand interactions. In silico study of pharmacokinetics and hepatotoxicity predicted 1-3 to have good oral bioavailability and 2 to have a lower hepatoxicity probability than isoniazid.
Collapse
Affiliation(s)
- Amany E. Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ebtisam T. Badawy
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Shaimaa M. Aboukhatwa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Marwa M. Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | |
Collapse
|
2
|
dos Santos Macêdo DC, Cavalcanti IDL, de Fátima Ramos dos Santos Medeiros SM, de Souza JB, de Britto Lira Nogueira MC, Cavalcanti IMF. Nanotechnology and tuberculosis: An old disease with new treatment strategies. Tuberculosis (Edinb) 2022; 135:102208. [DOI: 10.1016/j.tube.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022]
|
3
|
Cyto-genotoxic evaluation of novel anti-tubercular copper (II) complexes containing isoniazid-based ligands. Regul Toxicol Pharmacol 2020; 113:104653. [DOI: 10.1016/j.yrtph.2020.104653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 01/31/2023]
|
4
|
González-Torres M, Guzmán-Beltrán S, Mata-Gómez MA, González-Valdez J, Leyva-Gómez G, Melgarejo-Ramírez Y, Brostow W, Velasquillo C, Zúñiga-Ramos J, Rodríguez-Talavera R. Synthesis, characterization, and in vitro evaluation of gamma radiation-induced PEGylated isoniazid. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
5
|
Manning T, Slaton C, Myers N, Patel PD, Arrington D, Patel Z, Phillips D, Wylie G, Goddard R. A Copper 10-Paclitaxel crystal; a medicinally active drug delivery platform. Bioorg Med Chem Lett 2018; 28:3409-3417. [PMID: 30219524 DOI: 10.1016/j.bmcl.2018.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 01/16/2023]
Abstract
Paclitaxel is a well-known cancer drug that functions as a mitotic inhibitor. This work focuses on a copper based crystal that encapsulates the pharmaceutical agent and serves as a drug delivery agent. A Copper10-Pacitaxil1 chloride (CU10PAC1) complex is synthesized and tested against the National Cancer Institute's sixty cell line panel. The 10:1 ratio results in a crystal that was examined by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spec (MALDI-TOF-MS), Scanning Electron Microscopy (SEM) and Proton (1H) and Carbon (13C) Nuclear Magnetic Resonance (NMR). The potential attributes of a copper based crystal as an in vivo drug carrier for Paclitaxel are discussed.
Collapse
Affiliation(s)
- Thomas Manning
- Chemistry Department, Valdosta State University, Valdosta, GA 31698, United States.
| | - Christopher Slaton
- Chemistry Department, Valdosta State University, Valdosta, GA 31698, United States
| | - Nia Myers
- Chemistry Department, Valdosta State University, Valdosta, GA 31698, United States
| | - Pavan D Patel
- Chemistry Department, Valdosta State University, Valdosta, GA 31698, United States
| | - Domonique Arrington
- Chemistry Department, Valdosta State University, Valdosta, GA 31698, United States
| | - Zalak Patel
- Chemistry Department, Valdosta State University, Valdosta, GA 31698, United States
| | - Dennis Phillips
- PAMS Lab, Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Greg Wylie
- NMR Lab, Chemistry Department, Texas A&M University, College Station, TX, United States
| | - Russell Goddard
- Biology Department, Valdosta State University, Valdosta, GA, United States
| |
Collapse
|
6
|
Filatova LY, Klyachko NL, Kudryashova EV. Targeted delivery of anti-tuberculosis drugs to macrophages: targeting mannose receptors. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Joshi H, Shah N, Sakar D, Desai NC, Jadeja KA. One Pot Synthesis and Biological Evaluation of Some New Pyridine‐3,5‐dicarbonitrile Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201702116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hitendra Joshi
- Department of ChemistrySaurashtra University Rajkot - 360005, Gujarat India
| | - Nirav Shah
- Department of ChemistrySaurashtra University Rajkot - 360005, Gujarat India
| | - Dhiman Sakar
- Combi Chem-Bio Resource CentreCSIR-National Chemical Laboratory Pune - 411008 India
| | - N. C. Desai
- Division of Medicinal Chemistry, Department of Chemistry (UGC NON-SAP & DST-FIST Sponsored)M K Bhavnagar University Bhavnagar - 364002, Gujarat India
| | - Krunalsinh A. Jadeja
- Division of Medicinal Chemistry, Department of Chemistry (UGC NON-SAP & DST-FIST Sponsored)M K Bhavnagar University Bhavnagar - 364002, Gujarat India
| |
Collapse
|
8
|
Jeżowska-Bojczuk M, Stokowa-Sołtys K. Peptides having antimicrobial activity and their complexes with transition metal ions. Eur J Med Chem 2017; 143:997-1009. [PMID: 29232589 DOI: 10.1016/j.ejmech.2017.11.086] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/30/2022]
Abstract
Peptide antibiotics are produced by bacterial, mammalian, insect or plant organisms in defense against invasive microbial pathogens. Therefore, they are gaining importance as anti-infective agents. There are a number of antibiotics that require metal ions to function properly. Metal ions play a key role in their action and are involved in specific interactions with proteins, nucleic acids and other biomolecules. On the other hand, it is well known that some antimicrobial agents possess functional groups that enable them interacting with metal ions present in physiological fluids. Some findings support a hypothesis that they may alter the serum metal ions concentration in humans. Complexes usually have a higher positive charge than uncomplexed compounds. This means that they might interact more tightly with polyanionic DNA and RNA molecules. It has been shown that several metal ion complexes with antibiotics promote degradation of DNA. Some of them, such as bleomycin, form stable complexes with redox metal ions and split the nucleic acids chain via the free radicals mechanism. However, this is not a rule. For example blasticidin does not cause DNA damage. This indicates that some peptide antibiotics can be considered as ligands that effectively lower the oxidative activity of transition metal ions.
Collapse
Affiliation(s)
| | - Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
9
|
Manning TJ, Wilkerson K, Holder T, Bartley AC, Jackson C, Plummer S, Phillips D, Krajewski L, Wylie G. Pharmacokinetic studies of a three-component complex that repurposes the front line antibiotic isoniazid against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2017; 107:149-155. [PMID: 29050764 DOI: 10.1016/j.tube.2017.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/23/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022]
Abstract
The frontline tuberculosis (Tb) antibiotic isoniazid has been repurposed using a three component complex aimed at increasing the delivery efficiency and adding new avenues to its mechanism of action. This study focuses on pharmacokinetic studies of the isoniazid-sucrose-copper (II)-PEG-3350 complex. The assays include the Plasma Protein Binding Assay (85.8%), Caco-2 Permeability Assay (B→APapp, 0.13 × 10-6 cm/s), Cytochrome P450 Inhibition Assay (i.e. CYP2B6, IC50 = 7.26 μM), In vitro microsomal Stability Assay (t1/2 NADPH-Dependent > 240 min), and HepG2 Cytotoxicity (no toxicity). The National Cancer Institute's 60 cell line panel is used to measure activity against cancer cells. The percent growth values averaged over all 60 cell lines indicates the complex has no anti-cancer activity, which also suggests a lack of general toxicity. It also provides data for the complexes specificity against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Thomas J Manning
- Chemistry Department, Valdosta State University, Valdosta, GA 31698, USA.
| | - Kyle Wilkerson
- Chemistry Department, Valdosta State University, Valdosta, GA 31698, USA
| | - Taylor Holder
- Chemistry Department, Valdosta State University, Valdosta, GA 31698, USA
| | | | - Chelsea Jackson
- Chemistry Department, Valdosta State University, Valdosta, GA 31698, USA
| | - Sydney Plummer
- Chemistry Department, Valdosta State University, Valdosta, GA 31698, USA
| | - Dennis Phillips
- PAMS Facility, Chemistry, University of Georgia, Athens, GA, USA
| | - Logan Krajewski
- Fourier Transform Ion Cyclotron Resonance (FT-ICR) Facility, National High Field Magnet Lab, Tallahassee, FL, USA
| | - Greg Wylie
- NMR Lab, Chemistry Department, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Manning T, Plummer S, Woods R, Wylie G, Phillips D, Krajewski L. Cell line studies and analytical measurements of three paclitaxel complex variations. Bioorg Med Chem Lett 2017; 27:2793-2799. [PMID: 28495086 DOI: 10.1016/j.bmcl.2017.04.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
Abstract
The copper(II) cation, sucrose, and hydroxychloroquine were complexed with the chemotherapy agent paclitaxel and studied for medicinal activity. Data (GI50, LD50) from single dose and five dose National Cancer Institute sixty cell line panels are presented. Analytical measurements of different complexes were made using Nuclear Magnetic Resonance (1H NMR), Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry (MALDI-TOF-MS) and Fourier Transform-Ion Cyclotron Resonance (FT-ICR). Molecular modeling is utilized to better understand the impact that species could have on physical parameters associated with Lipinski's Rule of Five, such as logP and TPSA. On average, Cu(II) and hydroxychloroquine decreased GI50 values, while sucrose increased GI50 values of paclitaxel.
Collapse
Affiliation(s)
- Thomas Manning
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States.
| | - Sydney Plummer
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Rechelle Woods
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Greg Wylie
- NMR Facility, Department of Chemistry, Texas A&M, College Station, TX 77843, United States
| | - Dennis Phillips
- PAMS Facility, Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Logan Krajewski
- ICR Facility, National High Field Magnet Lab, Tallahassee, FL 32310, United States
| |
Collapse
|