1
|
Noori M, Khalili Ghomi M, Dastyafteh N, Oliyaei N, Hamedifar H, Javanshir S, Tanideh N, Sattarinezhad E, Sattari F, Haghani M, Rahmani H, Larijani B, Mahdavi M, Hajimiri MH, Iraji A. Isoindolinedione-Benzamide Pyridinium Derivatives for Targeting Alzheimer's Disease. ACS OMEGA 2024; 9:48032-48043. [PMID: 39676969 PMCID: PMC11635510 DOI: 10.1021/acsomega.4c04027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
An Isoindolinedione-benzamide pyridinium derivatives were designed through a structure-based strategy and synthesized as novel multifunctional anti-Alzheimer agents. The inhibitory activities of all 17 derivatives against acetylcholinesterase and butyrylcholinesterase were evaluated. Results exhibited that compound 7j displayed promising AChE inhibitory activity with an IC50 value of 0.26 ± 0.07 μM, and compound 7c exhibited an IC50 value of 0.08 ± 0.01 μM against BChE with 132-fold better inhibitory activity in comparison with positive control. Next, the enzyme kinetics studies and detailed binding mode via molecular docking were performed for the most potent compounds. Additionally, molecular dynamics simulations were accomplished to further investigate the potent compound's interaction, orientation, and conformation over the related enzymes. The neurotoxicity of the most potent derivative was executed against SH-SY5Y, and the mRNA levels of GSK-3α and GSK-3β after treatment with 7c on SH-SY5Y were evaluated. Results exhibited the mRNA levels of GSK-3β were decreased compared to the control group. All these results indicate that 7c is a good starting point for developing a multifunctional anti-Alzheimer compound.
Collapse
Affiliation(s)
- Milad Noori
- Pharmaceutical
and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Minoo Khalili Ghomi
- Endocrinology
and Metabolism Research Center, Endocrinology
and Metabolism Clinical Sciences Institute, Tehran University of Medical
Sciences, Tehran 1416634793, Iran
| | - Navid Dastyafteh
- Pharmaceutical
and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Najmeh Oliyaei
- Stem
Cells Technology Research Center, Shiraz
University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Haleh Hamedifar
- CinnaGen
Medical Biotechnology Research Center, Alborz
University of Medical Sciences, Karaj 1461965381, Iran
- CinnaGen
Research and Production Co., Alborz 3164819712, Iran
| | - Shahrzad Javanshir
- Pharmaceutical
and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Nader Tanideh
- Stem
Cells Technology Research Center, Shiraz
University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Elahe Sattarinezhad
- Department
of Pharmacology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Fateme Sattari
- Student
Research Committee, Shiraz University of
Medical Sciences, Shiraz 71348-14336, Iran
| | - Masoud Haghani
- Department
of Physiology, The Medical School, Shiraz
University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Hojjat Rahmani
- Department
of Health Management, Policy and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Bagher Larijani
- Endocrinology
and Metabolism Research Center, Endocrinology
and Metabolism Clinical Sciences Institute, Tehran University of Medical
Sciences, Tehran 1416634793, Iran
| | - Mohammad Mahdavi
- Endocrinology
and Metabolism Research Center, Endocrinology
and Metabolism Clinical Sciences Institute, Tehran University of Medical
Sciences, Tehran 1416634793, Iran
| | - Mir H. Hajimiri
- CinnaGen
Research and Production Co., Alborz 3164819712, Iran
- CinnaGen
Medical Biotechnology Research Center, Alborz
University of Medical Sciences, Karaj 1461965381, Iran
| | - Aida Iraji
- Research
Center for Traditional Medicine and History of Medicine, Department
of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| |
Collapse
|
2
|
Wu X, Ze X, Qin S, Zhang B, Li X, Gong Q, Zhang H, Zhu Z, Xu J. Design, Synthesis, and Biological Evaluation of Novel Tetrahydroacridin Hybrids with Sulfur-Inserted Linkers as Potential Multitarget Agents for Alzheimer's Disease. Molecules 2024; 29:1782. [PMID: 38675602 PMCID: PMC11051924 DOI: 10.3390/molecules29081782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that can lead to the loss of cognitive function. The progression of AD is regulated by multiple signaling pathways and their associated targets. Therefore, multitarget strategies theoretically have greater potential for treating AD. In this work, a series of new hybrids were designed and synthesized by the hybridization of tacrine (4, AChE: IC50 = 0.223 μM) with pyrimidone compound 5 (GSK-3β: IC50 = 3 μM) using the cysteamine or cystamine group as the connector. The biological evaluation results demonstrated that most of the compounds exhibited moderate to good inhibitory activities against acetylcholinesterase (AChE) and glycogen synthase kinase 3β (GSK-3β). The optimal compound 18a possessed potent dual AChE/GSK-3β inhibition (AChE: IC50 = 0.047 ± 0.002 μM, GSK-3β: IC50 = 0.930 ± 0.080 μM). Further molecular docking and enzymatic kinetic studies revealed that this compound could occupy both the catalytic anionic site and the peripheral anionic site of AChE. The results also showed a lack of toxicity to SH-SY5Y neuroblastoma cells at concentrations of up to 25 μM. Collectively, this work explored the structure-activity relationships of novel tetrahydroacridin hybrids with sulfur-inserted linkers, providing a reference for the further research and development of new multitarget anti-AD drugs.
Collapse
Affiliation(s)
- Xiuyuan Wu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Xiaotong Ze
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Shuai Qin
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Beiyu Zhang
- Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK;
| | - Xinnan Li
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (Q.G.); (H.Z.)
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (Q.G.); (H.Z.)
| | - Zheying Zhu
- Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK;
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| |
Collapse
|
3
|
Al-Rifai NM, Al-Khalileh NM, Zahra JA, El-Barghouthi MI, Darras FH. Synthesis, biological evaluation, and computational studies of N-benzyl pyridinium-curcumin derivatives as potent AChE inhibitors with antioxidant activity. J Enzyme Inhib Med Chem 2023; 38:2281264. [PMID: 37985494 PMCID: PMC11003481 DOI: 10.1080/14756366.2023.2281264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
A library of N-benzylpyridinium-based compounds, 7a-j and 8a-j, was designed and synthesised as potential acetylcholinesterase) AChE (inhibitors. An in vitro assay for the synthesised compounds showed that most compounds had significant AChE inhibitory activities at the nanomolar and submicromolar levels. The benzyl (8a) and fluoro (8b) derivatives were the most active, with IC50 values ≤56 nM. Compound 7f, which had a benzyl moiety, showed the highest potency among all the target compounds, with an IC50 value of 7.5 ± 0.19 nM against AChE, which was higher than that of the activities of tacrine (IC50 = 30 ± 0.2 nM) and donepezil (IC50 = 14 ± 0.12 nM). Compounds with vanillin moieties exhibited antioxidant activity. Among the tested compounds, four derivatives (7f, 7 g, 8f, and 8 g) exhibited superior AChE inhibitory activity, with Ki values of 6-16 nM, which were potent in the same range as the approved drug, donepezil. These compounds showed moderate antioxidant activities, as indicated by the results of the ABTS assay.
Collapse
Affiliation(s)
- Nafisah M. Al-Rifai
- Pharmaceutical-Chemical Engineering Department, School of Medical Sciences, German Jordanian University, P.O. Box 35247, Amman11180, Jordan
| | | | - Jalal A. Zahra
- Chemistry Department, The University of Jordan, Amman, Jordan
| | - Musa I. El-Barghouthi
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa13133, Jordan
| | | |
Collapse
|
4
|
Petcu AS, Lázaro-Milla C, Rodríguez FJ, Iriepa I, Bautista-Aguilera ÓM, Aragoncillo C, Alonso JM, Almendros P. Straightforward Synthesis of Bis[(trifluoromethyl)sulfonyl]ethylated Isocoumarins from 2-Ethynylbenzoates. J Org Chem 2023. [PMID: 37133251 DOI: 10.1021/acs.joc.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Herein, we report a facile isocoumarin and isoquinolone preparation by taking advantage of an initial bis(triflyl)ethylation [triflyl = (trifluoromethyl)sulfonyl] reaction, followed by heterocyclization, which contrasts with our previous results on cyclobutene formation. The efficiency of the catalyst- and irradiation-free heterocyclization/bis(triflyl)ethylation sequence showed exquisite dependence on the electronic nature of the substituents at the 2-ethynylbenzoate(benzamide) precursors. Molecular docking of model bis(triflyl)ethylated isocoumarins on human acetylcholinesterase (hAChE) revealed promising biological activities through selective coordination on both the catalytic active site and peripheral active site.
Collapse
Affiliation(s)
- A Sonia Petcu
- Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Carlos Lázaro-Milla
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - F Javier Rodríguez
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel Iriepa
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Óscar M Bautista-Aguilera
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Cristina Aragoncillo
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M Alonso
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Almendros
- Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
5
|
Li X, Li T, Zhang P, Li X, Lu L, Sun Y, Zhang B, Allen S, White L, Phillips J, Zhu Z, Yao H, Xu J. Discovery of novel hybrids containing clioquinol−1-benzyl-1,2,3,6-tetrahydropyridine as multi-target-directed ligands (MTDLs) against Alzheimer's disease. Eur J Med Chem 2022; 244:114841. [DOI: 10.1016/j.ejmech.2022.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022]
|
6
|
Development of p-Tau Differentiated Cell Model of Alzheimer's Disease to Screen Novel Acetylcholinesterase Inhibitors. Int J Mol Sci 2022; 23:ijms232314794. [PMID: 36499118 PMCID: PMC9741399 DOI: 10.3390/ijms232314794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by an initial accumulation of amyloid plaques and neurofibrillary tangles, along with the depletion of cholinergic markers. The currently available therapies for AD do not present any disease-modifying effects, with the available in vitro platforms to study either AD drug candidates or basic biology not fully recapitulating the main features of the disease or being extremely costly, such as iPSC-derived neurons. In the present work, we developed and validated a novel cell-based AD model featuring Tau hyperphosphorylation and degenerative neuronal morphology. Using the model, we evaluated the efficacy of three different groups of newly synthesized acetylcholinesterase (AChE) inhibitors, along with a new dual acetylcholinesterase/glycogen synthase kinase 3 inhibitor, as potential AD treatment on differentiated SH-SY5Y cells treated with glyceraldehyde to induce Tau hyperphosphorylation, and subsequently neurite degeneration and cell death. Testing of such compounds on the newly developed model revealed an overall improvement of the induced defects by inhibition of AChE alone, showing a reduction of S396 aberrant phosphorylation along with a moderate amelioration of the neuron-like morphology. Finally, simultaneous AChE/GSK3 inhibition further enhanced the limited effects observed by AChE inhibition alone, resulting in an improvement of all the key parameters, such as cell viability, morphology, and Tau abnormal phosphorylation.
Collapse
|
7
|
Sepehri S, Saeedi M, Larijani B, Mahdavi M. Recent developments in the design and synthesis of benzylpyridinium salts: Mimicking donepezil hydrochloride in the treatment of Alzheimer's disease. Front Chem 2022; 10:936240. [PMID: 36226120 PMCID: PMC9549744 DOI: 10.3389/fchem.2022.936240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Alzheimer's disease (AD) is an advanced and irreversible degenerative disease of the brain, recognized as the key reason for dementia among elderly people. The disease is related to the reduced level of acetylcholine (ACh) in the brain that interferes with memory, learning, emotional, and behavior responses. Deficits in cholinergic neurotransmission are responsible for the creation and progression of numerous neurochemical and neurological illnesses such as AD. Aim: Herein, focusing on the fact that benzylpyridinium salts mimic the structure of donepezil hydrochlorideas a FDA-approved drug in the treatment of AD, their synthetic approaches and inhibitory activity against cholinesterases (ChEs) were discussed. Also, molecular docking results and structure-activity relationship (SAR) as the most significant concept in drug design and development were considered to introduce potential lead compounds. Key scientific concepts: AChE plays a chief role in the end of nerve impulse transmission at the cholinergic synapses. In this respect, the inhibition of AChE has been recognized as a key factor in the treatment of AD, Parkinson's disease, senile dementia, myasthenia gravis, and ataxia. A few drugs such as donepezil hydrochloride are prescribed for the improvement of cognitive dysfunction and memory loss caused by AD. Donepezil hydrochloride is a piperidine-containing compound, identified as a well-known member of the second generation of AChE inhibitors. It was established to treat AD when it was assumed that the disease is associated with a central cholinergic loss in the early 1980s. In this review, synthesis and anti-ChE activity of a library of benzylpyridinium salts were reported and discussed based on SAR studies looking for the most potent substituents and moieties, which are responsible for inducing the desired activity even more potent than donepezil. It was found that linking heterocyclic moieties to the benzylpyridinium salts leads to the potent ChE inhibitors. In this respect, this review focused on the recent reports on benzylpyridinium salts and addressed the structural features and SARs to get an in-depth understanding of the potential of this biologically improved scaffold in the drug discovery of AD.
Collapse
Affiliation(s)
- Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Novel and Potent Acetylcholinesterase Inhibitors for the Treatment of Alzheimer's Disease from Natural (±)-7,8-Dihydroxy-3-methyl-isochroman-4-one. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103090. [PMID: 35630563 PMCID: PMC9145193 DOI: 10.3390/molecules27103090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that causes memory and cognitive decline as well as behavioral problems. It is a progressive and well recognized complex disease; therefore, it is very urgent to develop novel and effective anti-AD drugs. In this study, a series of novel isochroman-4-one derivatives from natural (±)-7,8-dihydroxy-3-methyl-isochroman-4-one [(±)-XJP] were designed and synthesized, and their anti-AD potential was evaluated. Among them, compound 10a [(Z)-3-acetyl-1-benzyl-4-((6,7-dimethoxy-4-oxoisochroman-3-ylidene)methyl)pyridin-1-ium bromide] possessed potent anti-acetylcholinesterase (AChE) activity as well as modest antioxidant activity. Further molecular modeling and kinetic investigations revealed that compound 10a was a dual-binding inhibitor that binds to both catalytic anionic site (CAS) and peripheral anionic site (PAS) of the enzyme AChE. In addition, compound 10a exhibited low cytotoxicity and moderate anti-Aβ aggregation efficacy. Moreover, the in silico screening suggested that these compounds could pass across the blood–brain barrier with high penetration. These findings show that compound 10a was a promising lead from a natural product with potent AChE inhibitory activity and deserves to be further developed for the prevention and treatment of AD.
Collapse
|
9
|
Liu Y, Uras G, Onuwaje I, Li W, Yao H, Xu S, Li X, Li X, Phillips J, Allen S, Gong Q, Zhang H, Zhu Z, Liu J, Xu J. Novel inhibitors of AChE and Aβ aggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 235:114305. [DOI: 10.1016/j.ejmech.2022.114305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023]
|
10
|
Hassanzadeh M, Hassanzadeh F, Khodarahmi GA, Rostami M, Azimi F, Nadri H, Homayouni Moghadam F. Design, synthesis, and bio-evaluation of new isoindoline-1,3-dione derivatives as possible inhibitors of acetylcholinesterase. Res Pharm Sci 2021; 16:482-492. [PMID: 34522196 PMCID: PMC8407153 DOI: 10.4103/1735-5362.323915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 01/02/2023] Open
Abstract
Background and purpose: Alzheimer’s disease is considered one of the lead causes of elderly death around the world. A significant decrease in acetylcholine level in the brain is common in most patients with Alzheimer’s disease, therefore acetylcholinesterase (AChE) inhibitors such as donepezil and rivastigmine are widely used for patients with limited therapeutic results and major side effects. Experimental approach: A series of isoindoline-1,3-dione -N-benzyl pyridinium hybrids were designed, synthesized and evaluated as anti-Alzheimer agents with cholinesterase inhibitory activities. The structure of the compounds were confirmed by various methods of analysis such as HNMR, CNMR, and FT-IR. Molecular modeling studies were also performed to identify the possible interactions between neprilysin and synthesized compounds. Findings/Results: The biological screening results indicated that all synthesized compounds displayed potent inhibitory activity with IC50 values ranging from 2.1 to 7.4 μM. Among synthesized compounds, para-fluoro substituted compounds 7a and 7f exhibited the highest inhibitory potency against AChE (IC50 = 2.1 μM). Molecular modeling studies indicated that the most potent compounds were able to interact with both catalytic and peripheral active sites of the enzyme. Also, some of the most potent compounds (7a, 7c, and 7f) demonstrated a neuroprotective effect against H2O2-induced cell death in PC12 neurons. Conclusion and implications: The synthesized compounds demonstrated moderate to good AChE inhibitory effect with results higher than rivastigmine.
Collapse
Affiliation(s)
- Motahareh Hassanzadeh
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, I.R. Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, I.R. Iran
| | - Ghadam Ali Khodarahmi
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, I.R. Iran
| | - Mahbobe Rostami
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, I.R. Iran
| | - Fateme Azimi
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, I.R. Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farshad Homayouni Moghadam
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, I.R. Iran
| |
Collapse
|
11
|
Uras G, Manca A, Zhang P, Markus Z, Mack N, Allen S, Bo M, Xu S, Xu J, Georgiou M, Zhu Z. In vivo Evaluation of a Newly Synthesized Acetylcholinesterase Inhibitor in a Transgenic Drosophila Model of Alzheimer's Disease. Front Neurosci 2021; 15:691222. [PMID: 34276297 PMCID: PMC8278008 DOI: 10.3389/fnins.2021.691222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by disrupted memory, learning functions, reduced life expectancy, and locomotor dysfunction, as a result of the accumulation and aggregation of amyloid peptides that cause neuronal damage in neuronal circuits. In the current study, we exploited a transgenic Drosophila melanogaster line, expressing amyloid-β peptides to investigate the efficacy of a newly synthesized acetylcholinesterase inhibitor, named XJP-1, as a potential AD therapy. Behavioral assays and confocal microscopy were used to characterize the drug effect on AD symptomatology and amyloid peptide deposition. The symptomatology induced in this particular transgenic model recapitulates the scenario observed in human AD patients, showing a shortened lifespan and reduced locomotor functions, along with a significant accumulation of amyloid plaques in the brain. XJP-1 treatment resulted in a significant improvement of AD symptoms and a reduction of amyloid plaques by diminishing the amyloid aggregation rate. In comparison with clinically effective AD drugs, our results demonstrated that XJP-1 has similar effects on AD symptomatology, but at 10 times lower drug concentration than donepezil. It also showed an earlier beneficial effect on the reduction of amyloid plaques at 10 days after drug treatment, as observed for donepezil at 20 days, while the other drugs tested have no such effect. As a novel and potent AChE inhibitor, our study demonstrates that inhibition of the enzyme AChE by XJP-1 treatment improves the amyloid-induced symptomatology in Drosophila, by reducing the number of amyloid plaques within the fruit fly CNS. Thus, compound XJP-1 has the therapeutic potential to be further investigated for the treatment of AD.
Collapse
Affiliation(s)
- Giuseppe Uras
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, The University of Nottingham, University Park, Nottingham, United Kingdom
| | - Alessia Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Pengfei Zhang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Zsuzsa Markus
- Queens Medical Centre, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Natalie Mack
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie Allen
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, The University of Nottingham, University Park, Nottingham, United Kingdom
| | - Marco Bo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Marios Georgiou
- Queens Medical Centre, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Zheying Zhu
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, The University of Nottingham, University Park, Nottingham, United Kingdom
| |
Collapse
|
12
|
Design, synthesis and biological assessment of new 1-benzyl-4-((4-oxoquinazolin-3(4 H)-yl)methyl) pyridin-1-ium derivatives (BOPs) as potential dual inhibitors of acetylcholinesterase and butyrylcholinesterase. Heliyon 2021; 7:e06683. [PMID: 33869871 PMCID: PMC8045006 DOI: 10.1016/j.heliyon.2021.e06683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/28/2020] [Accepted: 03/30/2021] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD), is among the most growing neurodegenerative diseases, which is mainly caused by the acetylcholine neurotransmitter loss in the hippocampus and cortex. Emerging of the dual Acetylcholinesterase (AChE)/Butyrylcholinesterase (BuChE) inhibitors has increased for treating Alzheimer disease. In this study, we would like to report the design and synthesis of a new sequence of 1-benzyl-4-((4-oxoquinazolin-3(4H)-yl)methyl) pyridin-1-ium derivatives (BOPs) assessed as BuChE and AChE inhibitors. Ellman's approach was used for the evaluation of AChE and BuChE inhibitory activities. Moreover, docking research was conducted to predict the action mechanism. Among all synthesized compounds, 1-(3-bromobenzyl)-3-((4-oxoquinazolin-3(4H)-yl)methyl) pyridin-1-ium bromide (BOP-1) was found to be the most active compound with dual activity for inhibition of AChE (IC50 = 5.90 ± 0.07μM), and BuChE (IC50 = 6.76 ± 0.04μM) and 1-(4-chlorobenzyl)-3-((6,7-dimethoxy-4-oxoquinazolin-3(4H)-yl)methyl) pyridin-1-ium chloride (BOP-8) showed the highest AChE inhibitory activity (IC50s = 1.11 ± 0.09 μM). The synthesized compounds BOP-1 and BOP-8 could be proposed as valuable lead compounds for further drug discovery development against AD.
Collapse
|
13
|
Thapa P, Upadhyay SP, Suo WZ, Singh V, Gurung P, Lee ES, Sharma R, Sharma M. Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer's disease. Bioorg Chem 2021; 108:104681. [PMID: 33571811 PMCID: PMC7928223 DOI: 10.1016/j.bioorg.2021.104681] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Chalcone [(E)-1,3-diphenyl-2-propene-1-one], a small molecule with α, β unsaturated carbonyl group is a precursor or component of many natural flavonoids and isoflavonoids. It is one of the privileged structures in medicinal chemistry. It possesses a wide range of biological activities encouraging many medicinal chemists to study this scaffold for its usefulness to oncology, infectious diseases, virology and neurodegenerative diseases including Alzheimer's disease (AD). Small molecular size, convenient and cost-effective synthesis, and flexibility for modifications to modulate lipophilicity suitable for blood brain barrier (BBB) permeability make chalcones a preferred candidate for their therapeutic and diagnostic potential in AD. This review summarizes and highlights the importance of chalcone and its analogs as single target small therapeutic agents, multi-target directed ligands (MTDLs) as well as molecular imaging agents for AD. The information summarized here will guide many medicinal chemist and researchers involved in drug discovery to consider chalcone as a potential scaffold for the development of anti-AD agents including theranostics.
Collapse
Affiliation(s)
- Pritam Thapa
- Drug Discovery Program, Midwest Veterans' Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA.
| | - Sunil P Upadhyay
- Drug Discovery Program, Midwest Veterans' Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| | - William Z Suo
- Laboratory for Alzheimer's Disease & Aging Research, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Vikas Singh
- Division of Neurology, KCVA Medical Center, Kansas City, MO, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA
| | - Eung Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Ram Sharma
- Drug Discovery Program, Midwest Veterans' Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| | - Mukut Sharma
- Drug Discovery Program, Midwest Veterans' Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| |
Collapse
|
14
|
Zhao Z, Kang K, Yue J, Ji X, Qiao H, Fan P, Zheng X. Research progress in biological activities of isochroman derivatives. Eur J Med Chem 2020; 210:113073. [PMID: 33310287 DOI: 10.1016/j.ejmech.2020.113073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Isochromans are well recognized heterocyclic compounds in drug discovery which produce diverse therapeutically related applications in pharmacological practices. Medicinal chemistry investigators have synthesized drug-like isochroman candidates with multiple medicinal features including central nervous system (CNS), antioxidant, antimicrobial, antihypertensive, antitumor and anti-inflammatory agents. Simultaneously, SAR (Structure-Activity Relationship) analysis has drawn attentions among medicinal chemists, along with a great deal of derivatives have been derived for potential targets. In this article, we thoroughly summarize the biological activities and part of typical SAR for isochroman derivatives reported on existing literatures and patents, wishing to provide an overall retrospect and prospect on the isochroman analogues.
Collapse
Affiliation(s)
- Zefeng Zhao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China; School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, PR China
| | - Kaiwen Kang
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China
| | - Jiangxin Yue
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China
| | - Xiaotong Ji
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China
| | - Haifa Qiao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China.
| | - Peinan Fan
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, PR China
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, PR China
| |
Collapse
|
15
|
Fotopoulos I, Hadjipavlou-Litina D. Hybrids of Coumarin Derivatives as Potent and Multifunctional Bioactive Agents: A Review. Med Chem 2020; 16:272-306. [PMID: 31038071 DOI: 10.2174/1573406415666190416121448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/22/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coumarins exhibit a plethora of biological activities, e.g. antiinflammatory and anti-tumor. Molecular hybridization technique has been implemented in the design of novel coumarin hybrids with several bioactive groups in order to obtain molecules with better pharmacological activity and improved pharmacokinetic profile. OBJECTIVE Therefore, we tried to gather as many as possible biologically active coumarin hybrids referred in the literature till now, to delineate the structural characteristics in relation to the activities and to have a survey that might help the medicinal chemists to design new coumarin hybrids with drug-likeness and varied bioactivities. RESULTS The biological activities of the hybrids in most of the cases were found to be different from the biological activities presented by the parent coumarins. The results showed that the hybrid molecules are more potent compared to the standard drugs used in the evaluation experiments. CONCLUSION Conjugation of coumarin with varied pharmacophore groups/druglike molecules responsible for different biological activities led to many novel hybrid molecules, with a multitarget behavior and improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Ioannis Fotopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
16
|
Semenov VE, Zueva IV, Mukhamedyarov MA, Lushchekina SV, Petukhova EO, Gubaidullina LM, Krylova ES, Saifina LF, Lenina OA, Petrov KA. Novel Acetylcholinesterase Inhibitors Based on Uracil Moiety for Possible Treatment of Alzheimer Disease. Molecules 2020; 25:molecules25184191. [PMID: 32932702 PMCID: PMC7571187 DOI: 10.3390/molecules25184191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, novel derivatives based on 6-methyluracil and condensed uracil were synthesized, namely, 2,4-quinazoline-2,4-dione with ω-(ortho-nitrilebenzylethylamino) alkyl chains at the N atoms of the pyrimidine ring. In this series of synthesized compounds, the polymethylene chains were varied from having tetra- to hexamethylene chains, and secondary NH, tertiary ethylamino, and quaternary ammonium groups were introduced into the chains. The molecular modeling of the compounds indicated that they could function as dual binding site acetylcholinesterase inhibitors, binding to both the peripheral anionic site and active site. The data from in vitro experiments show that the most active compounds exhibit affinity toward acetylcholinesterase within a nanomolar range, with selectivity for acetylcholinesterase over butyrylcholinesterase reaching four orders of magnitude. In vivo biological assays demonstrated the potency of these compounds in the treatment of memory impairment using an animal model of Alzheimer disease.
Collapse
Affiliation(s)
- Vyacheslav E. Semenov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, 420088 Kazan, Russia; (I.V.Z.); (L.M.G.); (E.S.K.); (L.F.S.); (O.A.L.)
- Correspondence: (V.E.S.); (K.A.P.); Tel.: +7-843-279-47-09 (V.E.S.); +7-843-273-93-64 (K.A.P.)
| | - Irina V. Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, 420088 Kazan, Russia; (I.V.Z.); (L.M.G.); (E.S.K.); (L.F.S.); (O.A.L.)
| | - Marat A. Mukhamedyarov
- Institute of Neuroscience, Kazan State Medical University, 420012 Kazan, Russia; (M.A.M.); (E.O.P.)
| | - Sofya V. Lushchekina
- Emanuel Institute of Biochemical Physics, Kosygina st. 4, 119334 Moscow, Russia;
| | - Elena O. Petukhova
- Institute of Neuroscience, Kazan State Medical University, 420012 Kazan, Russia; (M.A.M.); (E.O.P.)
| | - Lilya M. Gubaidullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, 420088 Kazan, Russia; (I.V.Z.); (L.M.G.); (E.S.K.); (L.F.S.); (O.A.L.)
| | - Evgeniya S. Krylova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, 420088 Kazan, Russia; (I.V.Z.); (L.M.G.); (E.S.K.); (L.F.S.); (O.A.L.)
| | - Lilya F. Saifina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, 420088 Kazan, Russia; (I.V.Z.); (L.M.G.); (E.S.K.); (L.F.S.); (O.A.L.)
| | - Oksana A. Lenina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, 420088 Kazan, Russia; (I.V.Z.); (L.M.G.); (E.S.K.); (L.F.S.); (O.A.L.)
| | - Konstantin A. Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, 420088 Kazan, Russia; (I.V.Z.); (L.M.G.); (E.S.K.); (L.F.S.); (O.A.L.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russia
- Correspondence: (V.E.S.); (K.A.P.); Tel.: +7-843-279-47-09 (V.E.S.); +7-843-273-93-64 (K.A.P.)
| |
Collapse
|
17
|
Shi DH, Min W, Song MQ, Si XX, Li MC, Zhang ZY, Liu YW, Liu WW. Synthesis, characterization, crystal structure and evaluation of four carbazole-coumarin hybrids as multifunctional agents for the treatment of Alzheimer’s disease. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Design, synthesis and evaluation of new 4-arylthiazole-2-amine derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem Lett 2020; 30:126985. [PMID: 32008906 DOI: 10.1016/j.bmcl.2020.126985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 11/23/2022]
Abstract
A series of new 4-arylthiazole-2-amine derivatives as acetylcholinesterase inhibitors (AChEIs) were designed and synthesized, Furthermore, their inhibitory activities against acetylcholinesterase in vitro were tested by Ellman spectrophotometry, and the results of inhibitory activity test showed that most of them had a certain acetylcholinesterase inhibitory activity in vitro. Moreover, the IC50 value of compound 4f was to 0.66 μM, which was higher than that of Rivastigmine and Huperzine-A as reference compounds, and it had a weak inhibitory effect on butyrylcholinesterase. The potential binding mode of compound 4f with AChE was investigated by the molecular docking, and the results showed that 4f was strongly bound up with AChE with the optimal conformation, in addition, their binding energy reached -11.27 Kcal*mol-1. At last, in silico molecular property of the synthesized compounds were predicted by using Molinspiration online servers. It can be concluded that the lead AChEIs compound 4f presented satisfactory drug-like characteristics.
Collapse
|
19
|
Design, synthesis and molecular modeling of isothiochromanone derivatives as acetylcholinesterase inhibitors. Future Med Chem 2019; 11:2687-2699. [PMID: 31596141 DOI: 10.4155/fmc-2019-0125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A series of novel isothio- and isoselenochromanone derivatives bearing N-benzyl pyridinium moiety were designed, synthesized and evaluated as acetylcholinesterase (AChE) inhibitors. Results: Most of the target compounds exhibited potent anti-AChE activities with IC50 values in nanomolar ranges. Among them, compound 15a exhibited the most potent anti-AChE activity (IC50 = 2.7 nM), moderate antioxidant activity and low neurotoxicity. Moreover, the kinetic and docking studies revealed that compound 15a was a mixed-type inhibitor, which bounds to peripheral anionic site and catalytic active site of AChE. Conclusion: Those results suggested that compound 15a might be a potential candidate for AD treatment.
Collapse
|
20
|
Tankov I, Yankova R. Mechanistic investigation of molecular geometry, intermolecular interactions and spectroscopic properties of pyridinium nitrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:53-67. [PMID: 31030047 DOI: 10.1016/j.saa.2019.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
The molecular structure, vibrational frequencies of the fundamental modes and electronic transitions of the ionic liquid pyridinium nitrate ([H-Pyr]+[NO3]-) have been determined by means of density functional theory (DFT) at B3LYP/6-311++G (2d,2p) level. The chemical bonds nature and the intermolecular interactions in the title compound were investigated using the Quantum theory of atoms in molecules and Hirshfeld surface analysis. Natural bond orbital analysis has been performed in order to elucidate the hybridization and delocalization of electron density within the ion pair [H-Pyr]+[NO3]-. A detailed vibrational spectral analysis was carried out and the assignments of the observed bands have been proposed on the basis of potential energy distribution. A good correlation between experimental and theoretical IR frequencies was observed. To study the charge transfers occurred in the title molecule, UV-vis analysis was conducted.
Collapse
Affiliation(s)
- Ivaylo Tankov
- University "Prof. Dr. Assen Zlatarov" Burgas, 8010, Bulgaria.
| | - Rumyana Yankova
- University "Prof. Dr. Assen Zlatarov" Burgas, 8010, Bulgaria
| |
Collapse
|
21
|
Synthesis of isochroman-4-ones and 2H-pyran-3(6H)-ones by gold-catalyzed oxidative cycloalkoxylation of alkynes. Bioorg Med Chem 2019; 27:2616-2620. [DOI: 10.1016/j.bmc.2019.03.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/29/2019] [Indexed: 12/24/2022]
|
22
|
Synthesis and cholinesterase inhibitory activity of new 2-benzofuran carboxamide-benzylpyridinum salts. Bioorg Chem 2018; 80:180-188. [DOI: 10.1016/j.bioorg.2018.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/22/2018] [Accepted: 06/03/2018] [Indexed: 01/13/2023]
|
23
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
24
|
Ghobadian R, Mahdavi M, Nadri H, Moradi A, Edraki N, Akbarzadeh T, Sharifzadeh M, Bukhari SNA, Amini M. Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and β-secretase inhibition activities. Eur J Med Chem 2018; 155:49-60. [PMID: 29857276 DOI: 10.1016/j.ejmech.2018.05.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 12/28/2022]
Abstract
Butyrylcholinesterase (BuChE) inhibitors have become interesting target for treatment of Alzheimer's disease (AD). A series of dual binding site BuChE inhibitors were designed and synthesized based on 2,3,4,9-tetrahydro-1H-carbazole attached benzyl pyridine moieties. In-vitro assay revealed that all of the designed compounds were selective and potent BuChE inhibitors. The most potent BuChE inhibitor was compound 6i (IC50 = 0.088 ± 0.0009 μM) with the mixed-type inhibition. Docking study revealed that 6i is a dual binding site BuChE inhibitor. Also, Pharmacokinetic properties for 6i were accurate to Lipinski's rule. In addition, compound 6i demonstrated neuroprotective and β-secretase (BACE1) inhibition activities. This compound could also inhibit AChE-induced and self-induced Aβ peptide aggregation at concentration of 100 μM and 10 μM respectively. Generally, the results are presented as new potent selective BuChE inhibitors with a therapeutic potential for the treatment of AD.
Collapse
Affiliation(s)
- Roshanak Ghobadian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Pharmaceutical Science Research Center and Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd 8915173143, Iran
| | - Alireza Moradi
- Pharmaceutical Science Research Center and Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd 8915173143, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Al-jouf, Sakaka 2014, Saudi Arabia
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176, Iran.
| |
Collapse
|
25
|
Design and synthesis of novel coumarin-pyridinium hybrids: In vitro cholinesterase inhibitory activity. Bioorg Chem 2018; 77:311-319. [DOI: 10.1016/j.bioorg.2018.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/25/2023]
|
26
|
Xing S, Gu N, Qin J, Cui H, Li Y, Wang K, Tian D, Chen B, Yu G. Construction of 4-Isochromanones through Cu(OTf)2
-Catalysed Sequential C=O and C-O Bond Formation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Nan Gu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Jiajing Qin
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Hong Cui
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Yan Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Dawei Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Bo Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Guo Yu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| |
Collapse
|
27
|
Novel donepezil-like N -benzylpyridinium salt derivatives as AChE inhibitors and their corresponding dihydropyridine “bio-oxidizable” prodrugs: Synthesis, biological evaluation and structure-activity relationship. Eur J Med Chem 2018; 145:165-190. [DOI: 10.1016/j.ejmech.2017.12.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 11/22/2022]
|
28
|
Wang J, Wang C, Wu Z, Li X, Xu S, Liu J, Lan Q, Zhu Z, Xu J. Design, synthesis, biological evaluation, and docking study of 4-isochromanone hybrids bearing N
-benzyl pyridinium moiety as dual binding site acetylcholinesterase inhibitors (part II). Chem Biol Drug Des 2017; 91:756-762. [DOI: 10.1111/cbdd.13136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/17/2017] [Accepted: 10/14/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Jia Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Chaolei Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Zheng Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Xinnan Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Jie Liu
- Department of Organic Chemistry; China Pharmaceutical University; Nanjing China
| | - Qinying Lan
- Life Science and Technique Base; Department of Life Science; Nanjing Agricultural University; Nanjing China
| | - Zheying Zhu
- Division of Molecular Therapeutics and Formulation; School of Pharmacy; The University of Nottingham, University Park Campus; Nottingham UK
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| |
Collapse
|
29
|
Design, synthesis and biological evaluation of novel coumarin- N -benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer's disease. Eur J Med Chem 2017; 139:48-59. [DOI: 10.1016/j.ejmech.2017.07.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/28/2017] [Accepted: 07/23/2017] [Indexed: 12/30/2022]
|
30
|
Lan JS, Hou JW, Liu Y, Ding Y, Zhang Y, Li L, Zhang T. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing N-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 32:776-788. [PMID: 28585866 PMCID: PMC6009898 DOI: 10.1080/14756366.2016.1256883] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel family of cinnamic acid derivatives has been developed to be multifunctional cholinesterase inhibitors against AD by fusing N-benzyl pyridinium moiety and different substituted cinnamic acids. In vitro studies showed that most compounds were endowed with a noteworthy ability to inhibit cholinesterase, self-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, compound 5l showed potent cholinesterase inhibitory activity (IC50, 12.1 nM for eeAChE, 8.6 nM for hAChE, 2.6 μM for eqBuChE and 4.4 μM for hBuChE) and the highest selectivity toward AChE over BuChE. It also showed good inhibition of Aβ (1–42) aggregation (64.7% at 20 μM) and good neuroprotection on PC12 cells against amyloid-induced cell toxicity. Finally, compound 5l could penetrate the BBB, as forecasted by the PAMPA-BBB assay and proved in OF1 mice by ex vivo experiments. Overall, compound 5l seems to be a promising lead compound for the treatment of Alzheimer’s diseases.
Collapse
Affiliation(s)
- Jin-Shuai Lan
- a Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Wei Hou
- a Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Liu
- a Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- a Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- a Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- a Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- b School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| |
Collapse
|
31
|
Huijuan Y, Yujie R, Wenqian X, Ren L. Design and synthesis of novel pyridinium nitrate-bearing substituted anilines via one-pot tandem reactions. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x14967701766950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thirty-two novel 2-amino-1-[3-oxo-3-(substituted-anilino)propyl]pyridinium nitrate derivatives were designed and prepared via one-pot tandem reactions. The structure of the 2-methylanilino derivative was characterised by X-ray crystallographic analysis. In addition, a potential formation mechanism is proposed.
Collapse
Affiliation(s)
- Yang Huijuan
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P.R. China
| | - Ren Yujie
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P.R. China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| | - Xu Wenqian
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P.R. China
| | - Li Ren
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P.R. China
| |
Collapse
|
32
|
Peauger L, Azzouz R, Gembus V, Ţînţaş ML, Sopková-de Oliveira Santos J, Bohn P, Papamicaël C, Levacher V. Donepezil-Based Central Acetylcholinesterase Inhibitors by Means of a “Bio-Oxidizable” Prodrug Strategy: Design, Synthesis, and in Vitro Biological Evaluation. J Med Chem 2017; 60:5909-5926. [DOI: 10.1021/acs.jmedchem.7b00702] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ludovic Peauger
- VFP Therapies, 15 rue François
Couperin, 76000 Rouen, France
| | - Rabah Azzouz
- VFP Therapies, 15 rue François
Couperin, 76000 Rouen, France
| | - Vincent Gembus
- VFP Therapies, 15 rue François
Couperin, 76000 Rouen, France
| | - Mihaela-Liliana Ţînţaş
- Normandie
Université, COBRA, UMR 6014 et FR 3038, Univ Rouen, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Jana Sopková-de Oliveira Santos
- Centre
d’Etudes et de Recherche sur le Médicament de Normandie, Université de Caen, Boulevard Becquerel, 14032 Caen Cedex, France
| | - Pierre Bohn
- Department
of Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University
Hospital and QuantIF LITIS (Equipe d’Accueil (EA) 4108-Federation
Recherche (FR) National Center for Scientific Research (CNRS) 3638),
Faculty of Medicine, University of Rouen, Rouen 76821, France
| | - Cyril Papamicaël
- Normandie
Université, COBRA, UMR 6014 et FR 3038, Univ Rouen, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Vincent Levacher
- Normandie
Université, COBRA, UMR 6014 et FR 3038, Univ Rouen, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| |
Collapse
|