1
|
Weirath NA, Haskell-Luevano C. Recommended Tool Compounds for the Melanocortin Receptor (MCR) G Protein-Coupled Receptors (GPCRs). ACS Pharmacol Transl Sci 2024; 7:2706-2724. [PMID: 39296259 PMCID: PMC11406693 DOI: 10.1021/acsptsci.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
The melanocortin receptors are a centrally and peripherally expressed family of Class A GPCRs with physiological roles, including pigmentation, steroidogenesis, energy homeostasis, and others yet to be fully characterized. There are five melanocortin receptor subtypes that, apart from the melanocortin-2 receptor (MC2R), are stimulated by a shared set of endogenous agonists. Until 2020, X-ray crystallographic and cryo-electron microscopic (cryo-EM) structures of these receptors were unavailable, and the investigation of their mechanisms of action and putative ligand-receptor interactions was driven by site-directed mutagenesis studies of the receptors and targeted structure-activity relationship (SAR) studies of the endogenous and derivative synthetic ligands. Synthetic derivatives of the endogenous agonist ligand α-MSH have evolved into a suite of powerful ligands such as NDP-MSH (melanotan I), melanotan II (MTII), and SHU9119. This suite of tool compounds now enables the study of the melanocortin receptors and serves as scaffolds for FDA-approved drugs, means of validating stably expressing melanocortin receptor cell lines, core ligands in assessing cryo-EM structures of active and inactive receptor complexes, and essential references for high-throughput discovery and mechanism of action studies. Herein, we review the history and significance of a finite set of these essential tool compounds and discuss how they are being utilized to further the field's understanding of melanocortin receptor physiology and greater druggability.
Collapse
Affiliation(s)
- Nicholas A Weirath
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Ericson MD, Tran LT, Mathre SS, Freeman KT, Holdaway K, John K, Lunzer MM, Bouchard JL, Haskell-Luevano C. Discovery of a Pan-Melanocortin Receptor Antagonist [Ac-DPhe(pI)-Arg-Nal(2')-Orn-NH 2] at the MC1R, MC3R, MC4R, and MC5R that Mediates an Increased Feeding Response in Mice and a 40-Fold Selective MC1R Antagonist [Ac-DPhe(pI)-DArg-Nal(2')-Arg-NH 2]. J Med Chem 2023; 66:8103-8117. [PMID: 37307241 PMCID: PMC10631449 DOI: 10.1021/acs.jmedchem.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Discovery of pan-antagonist ligands for the melanocortin receptors will help identify the physiological activities controlled by these receptors. The previously reported MC3R/MC4R antagonist Ac-DPhe(pI)-Arg-Nal(2')-Arg-NH2 was identified herein, for the first time, to possess MC1R and MC5R antagonist activity. Further structure-activity relationship studies probing the second and fourth positions were performed toward the goal of identifying potent melanocortin antagonists. Of the 21 tetrapeptides synthesized, 13 possessed MC1R, MC3R, MC4R, and MC5R antagonist activity. Three tetrapeptides were more than 10-fold selective for the mMC1R, including 8 (LTT1-44, Ac-DPhe(pI)-DArg-Nal(2')-Arg-NH2) that possessed 80 nM mMC1R antagonist potency and was at least 40-fold selective over the mMC3R, mMC4R, and mMC5R. Nine tetrapeptides were selective for the mMC4R, including 14 [SSM1-8, Ac-DPhe(pI)-Arg-Nal(2')-Orn-NH2] with an mMC4R antagonist potency of 1.6 nM. This compound was administered IT into mice, resulting in a dose-dependent increase in the food intake and demonstrating the in vivo utility of this compound series.
Collapse
Affiliation(s)
- Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Linh T Tran
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sarah S Mathre
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kelsey Holdaway
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kristen John
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mary M Lunzer
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob L Bouchard
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Ericson MD, Larson CM, Freeman KT, Nicke L, Geyer A, Haskell-Luevano C. Incorporation of Indoylated Phenylalanine Yields a Sub-Micromolar Selective Melanocortin-4 Receptor Antagonist Tetrapeptide. ACS OMEGA 2022; 7:27656-27663. [PMID: 35967074 PMCID: PMC9366794 DOI: 10.1021/acsomega.2c03307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 06/14/2023]
Abstract
The melanocortin family is involved in many physiological functions, including pigmentation, steroidogenesis, and appetite. The centrally expressed melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R) possess overlapping but distinct roles in energy homeostasis. Herein, the third and fourth positions of a tetrapeptide lead compound [Ac-Arg-Arg-(pI)DPhe-Tic-NH2], previously reported to possess MC3R agonist and MC4R antagonist activities, were substituted with indoylated phenylalanine (Wsf/Wrf) residues in an attempt to generate receptor subtype selective compounds. At the third position, d-amino acids were required for melanocortin agonist activity, while both l- and d-residues resulted in MC4R antagonist activity. These results indicate that l-indoylated phenylalanine residues at the third position of the scaffold can generate MC4R over MC3R selective antagonist ligands, resulting in a substitution pattern that may be exploited for novel MC4R ligands that can be used to probe the in vivo activity of the MC4R without involvement of the MC3R.
Collapse
Affiliation(s)
- Mark D. Ericson
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney M. Larson
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lennart Nicke
- Faculty
of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, Marburg 35032, Germany
| | - Armin Geyer
- Faculty
of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, Marburg 35032, Germany
| | - Carrie Haskell-Luevano
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Shoari A, Khalili S, Rasaee MJ, Löwik DWPM. A Phage Display Derived Cyclized Peptide Inhibits Fibrosarcoma Cells Invasion via Suppression of MMP-9 Activity. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Paulus J, Sewald N. Synthesis and Evaluation of a Non-Peptide Small-Molecule Drug Conjugate Targeting Integrin αVβ3. Front Chem 2022; 10:869639. [PMID: 35480387 PMCID: PMC9035832 DOI: 10.3389/fchem.2022.869639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 01/16/2023] Open
Abstract
An integrin αVβ3-targeting linear RGD mimetic containing a small-molecule drug conjugate (SMDC) was synthesized by combining the antimitotic agent monomethyl auristatin E (MMAE), an enzymatically cleavable Val-Ala-PABC linker with a linear conjugable RGD mimetic. The structure proposal for the conjugable RGD mimetic was suggested upon the DAD mapping analysis of a previously synthesized small-molecule RGD mimetic array based on a tyrosine scaffold. Therefore, a diversifying strategy was developed as well as a novel method for the partial hydrogenation of pyrimidines in the presence of the hydrogenolytically cleavable Cbz group. The small-molecule RGD mimetics were evaluated in an ELISA-like assay, and the structural relationships were analyzed by DAD mapping revealing activity differences induced by structural changes as visualized in dependence on special structural motifs. This provided a lead structure for generation of an SMDC containing the antimitotic drug MMAE. The resulting SMDC containing a linear RGD mimetic was tested in a cell adhesion and an in vitro cell viability assay in comparison to reference SMDCs containing cRGDfK or cRADfK as the homing device. The linear RGD SMDC and the cRGDfK SMDC inhibited adhesion of αVβ3-positive WM115 cells to vitronectin with IC50 values in the low µM range, while no effect was observed for the αVβ3-negative M21-L cell line. The cRADfK SMDC used as a negative control was about 30-fold less active in the cell adhesion assay than the cRGDfK SMDC. Conversely, both the linear RGD SMDC and the cRGDfK SMDC are about 55-fold less cytotoxic than MMAE against the αVβ3-positive WM115 cell line with IC50 values in the nM range, while the cRADfK SMDC is 150-fold less cytotoxic than MMAE. Hence, integrin binding also influences the antiproliferative activity giving a targeting index of 2.8.
Collapse
|
6
|
Tomassi S, Dimmito MP, Cai M, D’Aniello A, Del Bene A, Messere A, Liu Z, Zhu T, Hruby VJ, Stefanucci A, Cosconati S, Mollica A, Di Maro S. CLIPSing Melanotan-II to Discover Multiple Functionally Selective hMCR Agonists. J Med Chem 2022; 65:4007-4017. [DOI: 10.1021/acs.jmedchem.1c01848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Stefano Tomassi
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, Naples 80131, Italy
| | - Marilisa Pia Dimmito
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, Chieti 66100, Italy
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Antonia D’Aniello
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessandra Del Bene
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Messere
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Zekun Liu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Tingyi Zhu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, Chieti 66100, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, Chieti 66100, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
7
|
Ericson MD, Doering SR, Larson CM, Freeman KT, LaVoi TM, Donow HM, Santos RG, Cho RH, Koerperich ZM, Giulianotti MA, Pinilla C, Houghten RA, Haskell-Luevano C. Functional Mixture-Based Positional Scan Identifies a Library of Antagonist Tetrapeptide Sequences (LAtTeS) with Nanomolar Potency for the Melanocortin-4 Receptor and Equipotent with the Endogenous AGRP(86-132) Antagonist. J Med Chem 2021; 64:14860-14875. [PMID: 34592820 DOI: 10.1021/acs.jmedchem.1c01417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The melanocortin-4 receptor (MC4R) plays an important role in appetite. Agonist ligands that stimulate the MC4R decrease appetite, while antagonist compounds increase food consumption. Herein, a functional mixture-based positional scan identified novel MC4R antagonist sequences. Mixtures comprising a library of 12,960,000 tetrapeptides were screened in the presence and absence of the NDP-MSH agonist. These results led to the synthesis of 48 individual tetrapeptides, of which 40 were screened for functional activity at the melanocortin receptors. Thirteen compounds were found to possess nanomolar antagonist potency at the MC4R, with the general tetrapeptide sequence Ac-Aromatic-Basic-Aromatic-Basic-NH2. The most notable results include the identification of tetrapeptide 48 [COR1-25, Ac-DPhe(pI)-Arg-Nal(2')-Arg-NH2], an equipotent MC4R antagonist to agouti-related protein [AGRP(86-132)], more potent than miniAGRP(87-120), and possessing 15-fold selectivity for the MC4R versus the MC3R. These tetrapeptides may serve as leads for novel appetite-inducing therapies to treat states of negative energy balance, such as cachexia and anorexia.
Collapse
Affiliation(s)
- Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Skye R Doering
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney M Larson
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Travis M LaVoi
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Haley M Donow
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Radleigh G Santos
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida 33314, United States
| | - Rachel H Cho
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Giulianotti
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Clemencia Pinilla
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Richard A Houghten
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Yeo GSH, Chao DHM, Siegert AM, Koerperich ZM, Ericson MD, Simonds SE, Larson CM, Luquet S, Clarke I, Sharma S, Clément K, Cowley MA, Haskell-Luevano C, Van Der Ploeg L, Adan RAH. The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Mol Metab 2021; 48:101206. [PMID: 33684608 PMCID: PMC8050006 DOI: 10.1016/j.molmet.2021.101206] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Over the past 20 years, insights from human and mouse genetics have illuminated the central role of the brain leptin-melanocortin pathway in controlling mammalian food intake, with genetic disruption resulting in extreme obesity, and more subtle polymorphic variations influencing the population distribution of body weight. At the end of 2020, the U.S. Food and Drug Administration (FDA) approved setmelanotide, a melanocortin 4 receptor agonist, for use in individuals with severe obesity due to either pro-opiomelanocortin (POMC), proprotein convertase subtilisin/kexin type 1 (PCSK1), or leptin receptor (LEPR) deficiency. SCOPE OF REVIEW Herein, we chart the melanocortin pathway's history, explore its pharmacology, genetics, and physiology, and describe how a neuropeptidergic circuit became an important druggable obesity target. MAJOR CONCLUSIONS Unravelling the genetics of the subset of severe obesity has revealed the importance of the melanocortin pathway in appetitive control; coupling this with studying the molecular pharmacology of compounds that bind melanocortin receptors has brought a new obesity drug to the market. This process provides a drug discovery template for complex disorders, which for setmelanotide took 25 years to transform from a single gene into an approved drug.
Collapse
Affiliation(s)
- Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | | | - Anna-Maria Siegert
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Stephanie E Simonds
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Courtney M Larson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.
| | - Iain Clarke
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | - Karine Clément
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France, Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches (NutriOmics) Research Unit, Paris, France.
| | - Michael A Cowley
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | | | - Roger A H Adan
- Department of Translational Neuroscience, UMCU Brain Centre, University Medical Centre Utrecht, Utrecht University, the Netherlands; Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
9
|
Doering SR, Freeman K, Debevec G, Geer P, Santos RG, Lavoi TM, Giulianotti MA, Pinilla C, Appel JR, Houghten RA, Ericson MD, Haskell-Luevano C. Discovery of Nanomolar Melanocortin-3 Receptor (MC3R)-Selective Small Molecule Pyrrolidine Bis-Cyclic Guanidine Agonist Compounds Via a High-Throughput "Unbiased" Screening Campaign. J Med Chem 2021; 64:5577-5592. [PMID: 33886285 PMCID: PMC8552302 DOI: 10.1021/acs.jmedchem.0c02041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The central melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are key regulators of body weight and energy homeostasis. Herein, the discovery and characterization of first-in-class small molecule melanocortin agonists with selectivity for the melanocortin-3 receptor over the melanocortin-4 receptor are reported. Identified via "unbiased" mixture-based high-throughput screening approaches, pharmacological evaluation of these pyrrolidine bis-cyclic guanidines resulted in nanomolar agonist activity at the melanocortin-3 receptor. The pharmacological profiles at the remaining melanocortin receptor subtypes tested indicated similar agonist potencies at both the melanocortin-1 and melanocortin-5 receptors and antagonist or micromolar agonist activities at the melanocortin-4 receptor. This group of small molecules represents a new area of chemical space for the melanocortin receptors with mixed receptor pharmacology profiles that may serve as novel lead compounds to modulate states of dysregulated energy balance.
Collapse
Affiliation(s)
- Skye R Doering
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie Freeman
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ginamarie Debevec
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Phaedra Geer
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Radleigh G Santos
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida 33314, United States
| | - Travis M Lavoi
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Marc A Giulianotti
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Clemencia Pinilla
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Jon R Appel
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Richard A Houghten
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Ericson MD, Haslach EM, Schnell SM, Freeman KT, Xiang ZM, Portillo FP, Speth R, Litherland SA, Haskell-Luevano C. Discovery of Molecular Interactions of the Human Melanocortin-4 Receptor (hMC4R) Asp189 (D189) Amino Acid with the Endogenous G-Protein-Coupled Receptor (GPCR) Antagonist Agouti-Related Protein (AGRP) Provides Insights to AGRP's Inverse Agonist Pharmacology at the hMC4R. ACS Chem Neurosci 2021; 12:542-556. [PMID: 33470098 DOI: 10.1021/acschemneuro.0c00755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The melanocortin receptors (MCRs) are important for numerous biological pathways, including feeding behavior and energy homeostasis. In addition to endogenous peptide agonists, this receptor family has two naturally occurring endogenous antagonists, agouti and agouti-related protein (AGRP). At the melanocortin-4 receptor (MC4R), the AGRP ligand functions as an endogenous inverse agonist in the absence of agonist and as a competitive antagonist in the presence of agonist. At the melanocortin-3 receptor (MC3R), AGRP functions solely as a competitive antagonist in the presence of agonist. The molecular interactions that differentiate AGRP's inverse agonist activity at the MC4R have remained elusive until the findings reported herein. Upon the basis of homology molecular modeling approaches, we previously postulated a unique interaction between the D189 position of the hMC4R and Asn114 of AGRP. To further test this hypothesis, six D189 mutant hMC4Rs (D189A, D189E, D189N, D189Q, D189S, and D189K) were generated and pharmacologically characterized resulting in the discovery of differences in inverse agonist activity of AGRP and an 11 macrocyclic compound library. These data support the hypothesized interaction between the hMC4R D189 position and Asn114 residue of AGRP and define critical ligand-receptor molecular interactions responsible for the inverse agonist activity of AGRP at the hMC4R.
Collapse
Affiliation(s)
- Mark D. Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Erica M. Haslach
- Departments of Pharmacodynamics and Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Sathya M. Schnell
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Zhimin M. Xiang
- Departments of Pharmacodynamics and Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Frederico P. Portillo
- Departments of Pharmacodynamics and Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Robert Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328, United States
- College of Medicine, Georgetown University, Washington, D.C. 20057, United States
| | - Sally A. Litherland
- Translational Research, Florida Hospital Cancer Institute, Orlando, Florida 32804, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
- Departments of Pharmacodynamics and Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
11
|
Kalita S, Kalita S, Paul A, Sarkar A, Mandal B. Peptidomimetics prepared by tail-to-side chain one component peptide stapling inhibit Alzheimer's amyloid-β fibrillogenesis. Chem Sci 2020; 11:4171-4179. [PMID: 34122880 PMCID: PMC8152599 DOI: 10.1039/c9sc06076f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting the elderly population worldwide. Despite enormous efforts and considerable advancement in research, no therapeutic agents have come to light to date. However, many peptide-based and small molecule inhibitors interact efficiently with the amyloid-β (Aβ) peptide and alter its aggregation pathway. On the other hand, stapled peptides have been developed mainly to stabilize α-helix conformations and study protein–protein interactions. β-Sheet stabilization or destabilization by stapled peptides has not been explored enough. Herein, we describe the generation of a library of “tail-to-side chain” stapled peptides via lactamization and their application for the first time as modulators of Aβ1-40 self-association and fibrillogenesis. They also disrupt the preformed fibrillar aggregates into nontoxic species. Their stability in the presence of proteolytic enzymes is increased due to stapling. Therefore, the stapled peptides thus formed can be useful as potent amyloid aggregation inhibitors and pave a therapeutic pathway for combating amyloid-related diseases. Also, they may help in gaining insight into the process of aggregation. Tail to side-chain stapled peptides inhibit fibrillogenesis of Alzheimer's amyloid β peptide by facilitating off-pathway aggregation.![]()
Collapse
Affiliation(s)
- Sujan Kalita
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| | - Sourav Kalita
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| | - Ashim Paul
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| | - Amar Sarkar
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| | - Bhubaneswar Mandal
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| |
Collapse
|
12
|
Chen Y, Tao K, Ji W, Makam P, Rencus-Lazar S, Gazit E. Self-Assembly of Cyclic Dipeptides: Platforms for Functional Materials. Protein Pept Lett 2020; 27:688-697. [PMID: 32048950 PMCID: PMC7616926 DOI: 10.2174/0929866527666200212123542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022]
Abstract
Supramolecular self-assembled functional materials comprised of cyclic dipeptide building blocks have excellent prospects for biotechnology applications due to their exceptional structural rigidity, morphological flexibility, ease of preparation and modification. Although the pharmacological uses of many natural cyclic dipeptides have been studied in detail, relatively little is reported on the engineering of these supramolecular architectures for the fabrication of functional materials. In this review, we discuss the progress in the design, synthesis, and characterization of cyclic dipeptide supramolecular nanomaterials over the past few decades, highlighting applications in biotechnology and optoelectronics engineering.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Kai Tao
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Wei Ji
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Pandeeswar Makam
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Sigal Rencus-Lazar
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
13
|
Wang J, Cary BP, Beyer PD, Gellman SH, Weix DJ. Ketones from Nickel-Catalyzed Decarboxylative, Non-Symmetric Cross-Electrophile Coupling of Carboxylic Acid Esters. Angew Chem Int Ed Engl 2019; 58:12081-12085. [PMID: 31287943 PMCID: PMC6707838 DOI: 10.1002/anie.201906000] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 12/22/2022]
Abstract
Synthesis of the C-C bonds of ketones relies upon one high-availability reagent (carboxylic acids) and one low-availability reagent (organometallic reagents or alkyl iodides). We demonstrate here a ketone synthesis that couples two different carboxylic acid esters, N-hydroxyphthalimide esters and S-2-pyridyl thioesters, to form aryl alkyl and dialkyl ketones in high yields. The keys to this approach are the use of a nickel catalyst with an electron-poor bipyridine or terpyridine ligand, a THF/DMA mixed solvent system, and ZnCl2 to enhance the reactivity of the NHP ester. The resulting reaction can be used to form ketones that have previously been difficult to access, such as hindered tertiary/tertiary ketones with strained rings and ketones with α-heteroatoms. The conditions can be employed in the coupling of complex fragments, including a 20-mer peptide fragment analog of Exendin(9-39) on solid support.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brian P Cary
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Peyton D Beyer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel J Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
14
|
Wang J, Cary BP, Beyer PD, Gellman SH, Weix DJ. Ketones from Nickel‐Catalyzed Decarboxylative, Non‐Symmetric Cross‐Electrophile Coupling of Carboxylic Acid Esters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906000] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jiang Wang
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Brian P. Cary
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Peyton D. Beyer
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Samuel H. Gellman
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Daniel J. Weix
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| |
Collapse
|
15
|
Sanguliya TA, Antipova AO, Shkavrov SV, Épshtein NB. Syntheses of Melanotan II and YSL Amide by Ajiphase® Methodology. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02020-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Lathbridge A, Mason JM. Combining Constrained Heptapeptide Cassettes with Computational Design To Create Coiled-Coil Targeting Helical Peptides. ACS Chem Biol 2019; 14:1293-1304. [PMID: 31117396 DOI: 10.1021/acschembio.9b00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A total of 32 heptapeptides have been synthesized and characterized to establish the effect of K → D (i → i + 4) lactamization upon their ability to adopt a helical conformation. Because most parallel and dimeric coiled-coil sequences can be deconvoluted into gabcdef repeats, we have introduced fixed solvent exposed b → f (K → D) constraints into this design scaffold. Interfacial " a" hydrophobic (L/I/V/N) and " e/g" electrostatic (E/K) options (4 × 2 × 2 = 16 cassettes) were introduced as core drivers of coiled-coil stability and specificity. All present as random coils when linear but adopt a helical conformation upon lactamization. Helicity varied in magnitude from 34 to 68%, indicating different levels of constraint tolerance within the context of a sequence required to be helical for function. Using the oncogenic transcription factor cJun as an exemplar, we next utilized our bCIPA coiled-coil screening engine to select four cassettes of highest predicted affinity when paired with four gabcdef cassettes within the full-length cJun target counterpart (164 = 65 536 combinations). This information was coupled with observed helicity for each constrained cassette to select for the best balance of predicted affinity when linear and experimentally validated helicity when constrained. As a control, the same approach was taken using cassettes of high predicted target affinity but with lower experimentally validated helicity. The approach provides a novel platform of modular heptapeptide cassettes experimentally validated and separated by helical content. Appropriate cassettes can be selected and conjugated to produce longer peptides, in which constraints impart appropriate helicity such that a wide range of targets can be engaged with high affinity and selectivity.
Collapse
|
17
|
Structure⁻Activity Relationships of the Tetrapeptide Ac-His-Arg-( pI)DPhe-Tic-NH 2 at the Mouse Melanocortin Receptors: Modification at the ( pI)DPhe Position Leads to mMC3R Versus mMC4R Selective Ligands. Molecules 2019; 24:molecules24081463. [PMID: 31013889 PMCID: PMC6515519 DOI: 10.3390/molecules24081463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022] Open
Abstract
The five melanocortin receptors (MC1R–MC5R) are involved in numerous biological pathways, including steroidogenesis, pigmentation, and food intake. In particular, MC3R and MC4R knockout mice suggest that the MC3R and MC4R regulate energy homeostasis in a non-redundant manner. While MC4R-selective agonists have been utilized as appetite modulating agents, the lack of MC3R-selective agonists has impeded progress in modulating this receptor in vivo. In this study, the (pI)DPhe position of the tetrapeptide Ac-His-Arg-(pI)DPhe-Tic-NH2 (an MC3R agonist/MC4R antagonist ligand) was investigated with a library of 12 compounds. The compounds in this library were found to have higher agonist efficacy and potency at the mouse (m) MC3R compared to the MC4R, indicating that the Arg-DPhe motif preferentially activates the mMC3R over the mMC4R. This observation may be used in the design of new MC3R-selective ligands, leading to novel probe and therapeutic lead compounds that will be useful for treating metabolic disorders.
Collapse
|
18
|
Fleming KA, Freeman KT, Ericson MD, Haskell-Luevano C. Synergistic Multiresidue Substitutions of a Macrocyclic c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-dPro] Agouti-Related Protein (AGRP) Scaffold Yield Potent and >600-Fold MC4R versus MC3R Selective Melanocortin Receptor Antagonists. J Med Chem 2018; 61:7729-7740. [PMID: 30035543 PMCID: PMC6174881 DOI: 10.1021/acs.jmedchem.8b00684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antagonist ligands of the melanocortin-3 and -4 receptors (MC3R, MC4R), including agouti-related protein (AGRP), are postulated to be targets for the treatment of diseases of negative energy balance. Previous studies reported the macrocyclic MC3R/MC4R antagonist c[Pro1-Arg2-Phe3-Phe4-Asn5-Ala6-Phe7-dPro8], which is 250-fold less potent at the mouse (m) mMC3R and 3-fold less potent at the mMC4R than AGRP. Previous studies explored the structure-activity relationships around individual positions in this template. Herein, a multiresidue substitution strategy is utilized, combining the lead sequence with hPhe4, Dap5, Arg5, Ser6, and Nle7 substitutions previously reported. Two compounds from this study (16, 20) contain an hPhe4/Ser6/Nle7 substitution pattern, are 3-6-fold more potent than AGRP at the mMC4R and are 600-800-fold selective for the mMC4R over the mMC3R. Another lead compound (21), possessing the hPhe4/Arg5 substitutions, is only 5-fold less potent than AGRP at the mMC3R and is equipotent to AGRP at the mMC4R.
Collapse
Affiliation(s)
- Katlyn A. Fleming
- University of Minnesota, Department of Medicinal Chemistry and Institute for Translation Neuroscience, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- University of Minnesota, Department of Medicinal Chemistry and Institute for Translation Neuroscience, Minneapolis, Minnesota 55455, United States
| | - Mark D. Ericson
- University of Minnesota, Department of Medicinal Chemistry and Institute for Translation Neuroscience, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- University of Minnesota, Department of Medicinal Chemistry and Institute for Translation Neuroscience, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Merlino F, Zhou Y, Cai M, Carotenuto A, Yousif AM, Brancaccio D, Di Maro S, Zappavigna S, Limatola A, Novellino E, Grieco P, Hruby VJ. Development of Macrocyclic Peptidomimetics Containing Constrained α,α-Dialkylated Amino Acids with Potent and Selective Activity at Human Melanocortin Receptors. J Med Chem 2018; 61:4263-4269. [PMID: 29660981 DOI: 10.1021/acs.jmedchem.8b00488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the development of macrocyclic melanocortin derivatives of MT-II and SHU-9119, achieved by modifying the cycle dimension and incorporating constrained amino acids in ring-closing. This study culminated in the discovery of novel agonists/antagonists with an unprecedented activity profile by adding pieces to the puzzle of the melanocortin receptor selectivity. Finally, the resulting 19- and 20-membered rings represent a suitable frame for the design of further therapeutic ligands as selective modulators of the melanocortin system.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy , University of Naples "Federico II" , Via D. Montesano 49 , 80131 Naples , Italy
| | - Yang Zhou
- Department of Chemistry and Biochemistry , University of Arizona , 1306 E. University Boulevard , Tucson , Arizona 85721 , United States
| | - Minying Cai
- Department of Chemistry and Biochemistry , University of Arizona , 1306 E. University Boulevard , Tucson , Arizona 85721 , United States
| | - Alfonso Carotenuto
- Department of Pharmacy , University of Naples "Federico II" , Via D. Montesano 49 , 80131 Naples , Italy
| | - Ali M Yousif
- Department of Pharmacy , University of Naples "Federico II" , Via D. Montesano 49 , 80131 Naples , Italy
| | - Diego Brancaccio
- Department of Pharmacy , University of Naples "Federico II" , Via D. Montesano 49 , 80131 Naples , Italy
| | - Salvatore Di Maro
- DiSTABiF , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - Silvia Zappavigna
- Department of Precision Medicine , University of Campania "Luigi Vanvitelli" , Via Costantinopoli 16 , 80138 Naples , Italy
| | - Antonio Limatola
- Department of Biology , Stanford University , Stanford , California 94305 , United States
| | - Ettore Novellino
- Department of Pharmacy , University of Naples "Federico II" , Via D. Montesano 49 , 80131 Naples , Italy
| | - Paolo Grieco
- Department of Pharmacy , University of Naples "Federico II" , Via D. Montesano 49 , 80131 Naples , Italy
| | - Victor J Hruby
- Department of Chemistry and Biochemistry , University of Arizona , 1306 E. University Boulevard , Tucson , Arizona 85721 , United States
| |
Collapse
|
20
|
Lensing CJ, Adank DN, Wilber SL, Freeman KT, Schnell SM, Speth RC, Zarth AT, Haskell-Luevano C. A Direct in Vivo Comparison of the Melanocortin Monovalent Agonist Ac-His-DPhe-Arg-Trp-NH 2 versus the Bivalent Agonist Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH 2: A Bivalent Advantage. ACS Chem Neurosci 2017; 8:1262-1278. [PMID: 28128928 DOI: 10.1021/acschemneuro.6b00399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bivalent ligands targeting putative melanocortin receptor dimers have been developed and characterized in vitro; however, studies of their functional in vivo effects have been limited. The current report compares the effects of homobivalent ligand CJL-1-87, Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH2, to monovalent ligand CJL-1-14, Ac-His-DPhe-Arg-Trp-NH2, on energy homeostasis in mice after central intracerebroventricular (ICV) administration into the lateral ventricle of the brain. Bivalent ligand CJL-1-87 had noteworthy advantages as an antiobesity probe over CJL-1-14 in a fasting-refeeding in vivo paradigm. Treatment with CJL-1-87 significantly decreased food intake compared to CJL-1-14 or saline (50% less intake 2-8 h after treatment). Furthermore, CJL-1-87 treatment decreased the respiratory exchange ratio (RER) without changing the energy expenditure indicating that fats were being burned as the primary fuel source. Additionally, CJL-1-87 treatment significantly lowered body fat mass percentage 6 h after administration (p < 0.05) without changing the lean mass percentage. The bivalent ligand significantly decreased insulin, C-peptide, leptin, GIP, and resistin plasma levels compared to levels after CJL-1-14 or saline treatments. Alternatively, ghrelin plasma levels were significantly increased. Serum stability of CJL-1-87 and CJL-1-14 (T1/2 = 6.0 and 16.8 h, respectively) was sufficient to permit physiological effects. The differences in binding affinity of CJL-1-14 compared to CJL-1-87 are speculated as a possible mechanism for the bivalent ligand's unique effects. We also provide in vitro evidence for the formation of a MC3R-MC4R heterodimer complex, for the first time to our knowledge, that may be an unexploited neuronal molecular target. Regardless of the exact mechanism, the advantageous ability of CJL-1-87 compared to CJL-1-14 to increase in vitro binding affinity, increase the duration of action in spite of decreased serum stability, decrease in vivo food intake, decrease mice's body fat percent, and differentially affect mouse hormone levels demonstrates the distinct characteristics achieved from the current melanocortin agonist bivalent design strategy.
Collapse
Affiliation(s)
- Cody J. Lensing
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Danielle N. Adank
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stacey L. Wilber
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sathya M. Schnell
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328-2018, United States
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057, United States
| | - Adam T. Zarth
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Doering SR, Freeman KT, Schnell SM, Haslach EM, Dirain M, Debevec G, Geer P, Santos RG, Giulianotti MA, Pinilla C, Appel JR, Speth RC, Houghten RA, Haskell-Luevano C. Discovery of Mixed Pharmacology Melanocortin-3 Agonists and Melanocortin-4 Receptor Tetrapeptide Antagonist Compounds (TACOs) Based on the Sequence Ac-Xaa 1-Arg-(pI)DPhe-Xaa 4-NH 2. J Med Chem 2017; 60:4342-4357. [PMID: 28453292 DOI: 10.1021/acs.jmedchem.7b00301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The centrally expressed melanocortin-3 and -4 receptors (MC3R/MC4R) have been studied as possible targets for weight management therapies, with a preponderance of studies focusing on the MC4R. Herein, a novel tetrapeptide scaffold [Ac-Xaa1-Arg-(pI)DPhe-Xaa4-NH2] is reported. The scaffold was derived from results obtained from a MC3R mixture-based positional scanning campaign. From these results, a set of 48 tetrapeptides were designed and pharmacologically characterized at the mouse melanocortin-1, -3, -4, and -5 receptors. This resulted in the serendipitous discovery of nine compounds that were MC3R agonists (EC50 < 1000 nM) and MC4R antagonists (5.7 < pA2 < 7.8). The three most potent MC3R agonists, 18 [Ac-Arg-Arg-(pI)DPhe-Tic-NH2], 1 [Ac-His-Arg-(pI)DPhe-Tic-NH2], and 41 [Ac-Arg-Arg-(pI)DPhe-DNal(2')-NH2] were more potent (EC50 < 73 nM) than the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2. This template contains a sequentially reversed "Arg-(pI)DPhe" motif with respect to the classical "Phe-Arg" melanocortin signaling motif, which results in pharmacology that is first-in-class for the central melanocortin receptors.
Collapse
Affiliation(s)
- Skye R Doering
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sathya M Schnell
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Erica M Haslach
- Department of Pharmacodynamics, University of Florida , Gainesville, Florida 32610, United States
| | - Marvin Dirain
- Department of Pharmacodynamics, University of Florida , Gainesville, Florida 32610, United States
| | - Ginamarie Debevec
- Torrey Pines Institute for Molecular Studies , Port St. Lucie, Florida 34987, United States
| | - Phaedra Geer
- Torrey Pines Institute for Molecular Studies , Port St. Lucie, Florida 34987, United States
| | - Radleigh G Santos
- Torrey Pines Institute for Molecular Studies , Port St. Lucie, Florida 34987, United States
| | - Marc A Giulianotti
- Torrey Pines Institute for Molecular Studies , Port St. Lucie, Florida 34987, United States
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies , San Diego, California 92121, United States
| | - Jon R Appel
- Torrey Pines Institute for Molecular Studies , San Diego, California 92121, United States
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University , Fort Lauderdale, Florida 33328, United States.,Department of Pharmacology and Physiology, Georgetown University , Washington, D.C. 20057, United States
| | - Richard A Houghten
- Torrey Pines Institute for Molecular Studies , Port St. Lucie, Florida 34987, United States.,Torrey Pines Institute for Molecular Studies , San Diego, California 92121, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States.,Department of Pharmacodynamics, University of Florida , Gainesville, Florida 32610, United States
| |
Collapse
|
22
|
Ericson MD, Freeman KT, Schnell SM, Haskell-Luevano C. A Macrocyclic Agouti-Related Protein/[Nle 4,DPhe 7]α-Melanocyte Stimulating Hormone Chimeric Scaffold Produces Subnanomolar Melanocortin Receptor Ligands. J Med Chem 2017; 60:805-813. [PMID: 28045525 DOI: 10.1021/acs.jmedchem.6b01707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The melanocortin system consists of five receptor subtypes, endogenous agonists, and naturally occurring antagonists. These receptors and ligands have been implicated in numerous biological pathways including processes linked to obesity and food intake. Herein, a truncation structure-activity relationship study of chimeric agouti-related protein (AGRP)/[Nle4,DPhe7]α-melanocyte stimulating hormone (NDP-MSH) ligands is reported. The tetrapeptide His-DPhe-Arg-Trp or tripeptide DPhe-Arg-Trp replaced the Arg-Phe-Phe sequence in the AGRP active loop derivative c[Pro-Arg-Phe-Phe-Xxx-Ala-Phe-DPro], where Xxx was the native Asn of AGRP or a diaminopropionic (Dap) acid residue previously shown to increase antagonist potency at the mMC4R. The Phe, Ala, and Dap/Asn residues were successively removed to generate a 14-member library that was assayed for agonist activity at the mouse MC1R, MC3R, MC4R, and MC5R. Two compounds possessed nanomolar agonist potency at the mMC4R, c[Pro-His-DPhe-Arg-Trp-Asn-Ala-Phe-DPro] and c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro], and may be further developed to generate novel melanocortin probes and ligands for understanding and treating obesity.
Collapse
Affiliation(s)
- Mark D Ericson
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sathya M Schnell
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Basoglu Ozdemir S, Uygun Cebeci Y, Bayrak H, Mermer A, Ceylan S, Demirbas A, Alpay Karaoglu S, Demirbas N. Synthesis and antimicrobial activity of new piperazine-based heterocyclic compounds. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2016-0125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe hydrazide
Collapse
|
24
|
Driowya M, Saber A, Marzag H, Demange L, Bougrin K, Benhida R. Microwave-Assisted Syntheses of Bioactive Seven-Membered, Macro-Sized Heterocycles and Their Fused Derivatives. Molecules 2016; 21:E1032. [PMID: 27517892 PMCID: PMC6273266 DOI: 10.3390/molecules21081032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022] Open
Abstract
This review describes the recent advances in the microwave-assisted synthesis of 7-membered and larger heterocyclic compounds. Several types of reaction for the cyclization step are discussed: Ring Closing Metathesis (RCM), Heck and Sonogashira reactions, Suzuki-Miyaura cross-coupling, dipolar cycloadditions, multi-component reactions (Ugi, Passerini), etc. Green syntheses and solvent-free procedures have been introduced whenever possible. The syntheses discussed herein have been selected to illustrate the huge potential of microwave in the synthesis of highly functionalized molecules with potential therapeutic applications, in high yields, enhanced reaction rates and increased chemoselectivity, compared to conventional methods. More than 100 references from the recent literature are listed in this review.
Collapse
Affiliation(s)
- Mohsine Driowya
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Aziza Saber
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Hamid Marzag
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Luc Demange
- Institut de Chimie de Nice, ICN UMR UNS CNRS 7272, Université Nice-Sophia Antipolis-Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France.
- Département de Chimie, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire & UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, Paris Fr-75006, France.
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Rachid Benhida
- Institut de Chimie de Nice, ICN UMR UNS CNRS 7272, Université Nice-Sophia Antipolis-Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France.
| |
Collapse
|
25
|
Wilson KR, Sedberry S, Pescatore R, Vinton D, Love B, Ballard S, Wham BC, Hutchison SK, Williamson EJ. Microwave-assisted cleavage of Alloc and Allyl Ester protecting groups in solid phase peptide synthesis. J Pept Sci 2016; 22:622-627. [DOI: 10.1002/psc.2910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/05/2016] [Accepted: 07/17/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Krista R. Wilson
- Wingate University; Department of Chemistry and Physics; Wingate NC 28174 USA
| | - Seth Sedberry
- Wingate University; Department of Chemistry and Physics; Wingate NC 28174 USA
| | - Robyn Pescatore
- Wingate University; Department of Chemistry and Physics; Wingate NC 28174 USA
| | - Daniel Vinton
- Wingate University; Department of Chemistry and Physics; Wingate NC 28174 USA
| | - Brian Love
- Wingate University; Department of Chemistry and Physics; Wingate NC 28174 USA
| | - Sarah Ballard
- Wingate University; Department of Chemistry and Physics; Wingate NC 28174 USA
| | - Bradley C. Wham
- Wingate University; Department of Chemistry and Physics; Wingate NC 28174 USA
| | - Stacy K. Hutchison
- Wingate University; Department of Chemistry and Physics; Wingate NC 28174 USA
| | | |
Collapse
|