1
|
Chouhan M, Tiwari PK, Mishra R, Gupta S, Kumar M, Almuqri EA, Ibrahim NA, Basher NS, Chaudhary AA, Dwivedi VD, Verma D, Kumar S. Unearthing phytochemicals as natural inhibitors for pantothenate synthetase in Mycobacterium tuberculosis: A computational approach. Front Pharmacol 2024; 15:1403900. [PMID: 39135797 PMCID: PMC11317409 DOI: 10.3389/fphar.2024.1403900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Pantothenate synthetase protein plays a pivotal role in the biosynthesis of coenzyme A (CoA), which is a crucial molecule involved in a number of cellular processes including the metabolism of fatty acid, energy production, and the synthesis of various biomolecules, which is necessary for the survival of Mycobacterium tuberculosis (Mtb). Therefore, inhibiting this protein could disrupt CoA synthesis, leading to the impairment of vital metabolic processes within the bacterium, ultimately inhibiting its growth and survival. This study employed molecular docking, structure-based virtual screening, and molecular dynamics (MD) simulation to identify promising phytochemical compounds targeting pantothenate synthetase for tuberculosis (TB) treatment. Among 239 compounds, the top three (rutin, sesamin, and catechin gallate) were selected, with binding energy values ranging from -11 to -10.3 kcal/mol, and the selected complexes showed RMSD (<3 Å) for 100 ns MD simulation time. Furthermore, molecular mechanics generalized Born surface area (MM/GBSA) binding free energy calculations affirmed the stability of these three selected phytochemicals with binding energy ranges from -82.24 ± 9.35 to -66.83 ± 4.5 kcal/mol. Hence, these identified natural plant-derived compounds as potential inhibitors of pantothenate synthetase could be used to inhibit TB infection in humans.
Collapse
Affiliation(s)
- Mandeep Chouhan
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Prashant Kumar Tiwari
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Eman Abdullah Almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nasir A. Ibrahim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nosiba Suliman Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Sanjay Kumar
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
2
|
Abdelnaby RM, El-Malah AA, FakhrEldeen RR, Saeed MM, Nadeem RI, Younis NS, Abdel-Rahman HM, El-Dydamony NM. In Vitro Anticancer Activity Screening of Novel Fused Thiophene Derivatives as VEGFR-2/AKT Dual Inhibitors and Apoptosis Inducers. Pharmaceuticals (Basel) 2022; 15:ph15060700. [PMID: 35745619 PMCID: PMC9229165 DOI: 10.3390/ph15060700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/13/2023] Open
Abstract
Protein kinases are seen as promising targets in controlling cell proliferation and survival in treating cancer where fused thiophene synthon was utilized in many kinase inhibitors approved by the FDA. Accordingly, this work focused on adopting fused thienopyrrole and pyrrolothienopyrimidine scaffolds in preparing new inhibitors, which were evaluated as antiproliferative agents in the HepG2 and PC-3 cell lines. The compounds 3b (IC50 = 3.105 and 2.15 μM) and 4c (IC50 = 3.023 and 3.12 μM) were the most promising candidates on both cells with good selective toxicity-sparing normal cells. A further mechanistic evaluation revealed promising kinase inhibitory activity, where 4c inhibited VEGFR-2 and AKT at IC50 = 0.075 and 4.60 μM, respectively, while 3b showed IC50 = 0.126 and 6.96 μM, respectively. Moreover, they resulted in S phase cell cycle arrest with subsequent caspase-3-induced apoptosis. Lastly, docking studies evaluated the binding patterns of these active derivatives and demonstrated a similar fitting pattern to the reference ligands inside the active sites of both VEGFR-2 and AKT (allosteric pocket) crystal structures. To conclude, these thiophene derivatives represent promising antiproliferative leads inhibiting both VEGFR-2 and AKT and inducing apoptosis in liver cell carcinoma.
Collapse
Affiliation(s)
- Rana M. Abdelnaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
- Correspondence: (R.M.A.); (N.M.E.-D.); Tel.: +20-01001797688 or +2-01270551779 (R.M.A.)
| | - Afaf A. El-Malah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rasha R. FakhrEldeen
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12585, Egypt;
| | - Marwa M. Saeed
- Pharmacology and Toxicology Lecturer, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt;
| | - Rania I. Nadeem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt;
| | - Nancy S. Younis
- Pharmaceutical Sciences Department, Faculty of Clinical Pharmacy, King Faisal University, Al-Ahsa, Al-Hofuf 31982, Saudi Arabia;
| | - Hanaa M. Abdel-Rahman
- Pharmacy Practice Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt;
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Ain Shams University, Cairo 11562, Egypt
| | - Nehad M. El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12585, Egypt
- Correspondence: (R.M.A.); (N.M.E.-D.); Tel.: +20-01001797688 or +2-01270551779 (R.M.A.)
| |
Collapse
|
3
|
Design, synthesis, in silico studies, and evaluation of novel chalcones and their pyrazoline derivatives for antibacterial and antitubercular activities. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02602-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Uzzaman M, Junaid M, Uddin MN. Evaluation of anti-tuberculosis activity of some oxotitanium(IV) Schiff base complexes; molecular docking, dynamics simulation and ADMET studies. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2644-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
5
|
Zhang S, Liu F, Hou X, Cao J, Dai X, Yu J, Huang G. Synthesis of Novel Analogs of Thieno[2,3- d] Pyrimidin-4(3 H)-ones as Selective Inhibitors of Cancer Cell Growth. Biomolecules 2019; 9:E631. [PMID: 31640194 PMCID: PMC6843832 DOI: 10.3390/biom9100631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
New 2,3-disubstituted thieno[2,3-d]pyrimidin-4(3H)-ones were synthesized via a one-pot reaction from 2H-thieno[2,3-d] [1,3]oxazine-2,4(1H)-diones, aromatic aldehydes, and benzylamine or 4-hydroxylbezylamine. The obtained compounds were tested in vitro for cancer cell growth inhibition. Compound 19 can inhibit all four types of tested cancer cells, i.e., MCF-7, A549, PC-9, and PC-3 cells. Most of the compounds inhibited the proliferation of A549 and MCF-7 cells. Compound 15 exhibited the strongest anti-proliferative effect against A549 cell lines with IC50 values of 0.94 μM, and with no toxicity to normal human liver cells. Its potency was further proved by cell clone formation assay, Hoechst 33258 staining, and evaluation on the effects of apoptosis-related proteins.
Collapse
Affiliation(s)
- Sheng Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai 201418, China.
| | - Feize Liu
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xueling Hou
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Jianguo Cao
- College of Life Sciences, Shanghai Normal University, Shanghai 201418, China.
| | - Xiling Dai
- College of Life Sciences, Shanghai Normal University, Shanghai 201418, China.
| | - Junjie Yu
- College of Life Sciences, Shanghai Normal University, Shanghai 201418, China.
| | - Guozheng Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 201418, China.
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
6
|
Abstract
Tuberculosis (TB) is a major issue in global health and affects millions of people each year. Multidrug-resistant tuberculosis (MDR-TB) annually causes many deaths worldwide. Development of a way to diagnose and treat patients with MDR-TB can potentially reduce the incidence of the disease. The current study reviews the risk factors, pattern of progression, mechanism of resistance, and interaction between bacteria and the host immune system, which disrupts the immune response. It also targets the components of Mycobacterium tuberculosis (Mtb) and diagnosis and treatment options that could be available for clinical use in the near future. Mutations play an important role in development of MDR-TB and the selection of appropriate mutations can help to understand the type of resistance in patients to anti-TB drugs. In this way, they can be initially treated with proper and effective therapeutic choices, which can accelerate the course of treatment and improve patient health. Targeting the components and enzymes of Mtb is necessary for understanding bacterial survival and finding a way to destroy the pathogen and allow patients to recover faster and prevent the spread of disease, especially resistant strains.
Collapse
Affiliation(s)
- Majid Faridgohar
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Damale MG, Patil RB, Ansari SA, Alkahtani HM, Almehizia AA, Shinde DB, Arote R, Sangshetti J. Molecular docking, pharmacophore based virtual screening and molecular dynamics studies towards the identification of potential leads for the management of H. pylori. RSC Adv 2019; 9:26176-26208. [PMID: 35531003 PMCID: PMC9070323 DOI: 10.1039/c9ra03281a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
The enzyme pantothenate synthetase panC is one of the potential new antimicrobial drug targets, but it is poorly characterized in H. pylori. H. pylori infection can cause gastric cancer and the management of H. pylori infection is crucial in various gastric ulcers and gastric cancer. The current study describes the use of innovative drug discovery and design approaches like comparative metabolic pathway analysis (Metacyc), exploration of database of essential genes (DEG), homology modelling, pharmacophore based virtual screening, ADMET studies and molecular dynamics simulations in identifying potential lead compounds for the H. pylori specific panC. The top ranked virtual hits STOCK1N-60270, STOCK1N-63040, STOCK1N-44424 and STOCK1N-63231 can act as templates for synthesis of new H. pylori inhibitors and they hold a promise in the management of gastric cancers caused by H. pylori.
Collapse
Affiliation(s)
- Manoj G Damale
- Department of Pharmaceutical Medicinal Chemistry, Srinath College of Pharmacy Aurangabad M.S. 431136 India
| | - Rajesh B Patil
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy Kondhwa (Bk) Pune India
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Po Box 2454 Riyadh 11451 Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Po Box 2454 Riyadh 11451 Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Po Box 2454 Riyadh 11451 Saudi Arabia
| | | | - Rohidas Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University Seoul Republic of Korea
| | - Jaiprakash Sangshetti
- Y. B. Chavan College of Pharmacy Dr Rafiq Zakaria Campus, Rauza Baugh Aurangabad MS India
| |
Collapse
|
8
|
Rossetti A, Bono N, Candiani G, Meneghetti F, Roda G, Sacchetti A. Synthesis and Antimicrobial Evaluation of Novel Chiral 2-Amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine Derivatives. Chem Biodivers 2019; 16:e1900097. [PMID: 30942951 DOI: 10.1002/cbdv.201900097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/01/2019] [Indexed: 11/06/2022]
Abstract
New N-substituted-2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivatives were synthesized employing a convenient one-pot three-component method and their structures were characterized by 1 H-NMR and single crystal X-ray diffraction analysis. All the synthesized compounds were in vitro screened for antimicrobial activity against Gram-positive (Sarcina lutea) and Gram-negative bacteria (Escherichia coli). In this work, we introduced a chiral residue on the tetrahydropyridine nitrogen, the hitherto the less investigated position on this pharmacophore in order to explore the effect. The antibacterial results showed that the synthesized compounds were active only against Gram-positive bacteria and the (R)-enantiomers displayed a greater antimicrobial potency than their (S)-counterparts. The structure-activity relationship here investigated may provide some interesting clues for future development of tetrahydrothienopyridine derivatives with higher antimicrobial activity.
Collapse
Affiliation(s)
- Arianna Rossetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica 'Giulio Natta' Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Nina Bono
- Research Unit Milano Politecnico, INSTM, Via Mancinelli 7, 20131, Milano, Italy
| | - Gabriele Candiani
- Dipartimento di Chimica, Materiali e Ingegneria Chimica 'Giulio Natta' Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy.,Research Unit Milano Politecnico, INSTM, Via Mancinelli 7, 20131, Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Gabriella Roda
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Alessandro Sacchetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica 'Giulio Natta' Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy.,Research Unit Milano Politecnico, INSTM, Via Mancinelli 7, 20131, Milano, Italy
| |
Collapse
|
9
|
Ali EMH, Abdel-Maksoud MS, Oh CH. Thieno[2,3-d]pyrimidine as a promising scaffold in medicinal chemistry: Recent advances. Bioorg Med Chem 2019; 27:1159-1194. [PMID: 30826188 DOI: 10.1016/j.bmc.2019.02.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
Thienopyrimidine scaffold is a fused heterocyclic ring system that structurally can be considered as adenine, the purine base that is found in both DNA and RNA-bioisosteres. Thienopyrimidines exist in three distinct isomeric forms. The current review discusses thieno[2,3-d]pyrimidine as a one of the opulent heterocycles in drug discovery. Its broad range of medical applications such as anticancer, anti-inflammatory, anti-microbial, and CNS protective agents has inspired us to study its structure-activity relationship (SAR), along with its relevant synthetic strategies. The present review briefly summarizes synthetic approaches for the preparation of thieno[2,3-d]pyrimidine derivatives. In addition, the promising biological activities of this scaffold are also illustrated with explanatory diagrams for their SAR studies.
Collapse
Affiliation(s)
- Eslam M H Ali
- Center for Biomaterials, Korea Institute of Science & Technology (KIST), Seoul, Seongbuk-gu 02792, Republic of Korea; Department of Biomolecular Science, University of Science & Technology (UST), Daejeon, Yuseong-gu 34113, Republic of Korea
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science & Technology (KIST), Seoul, Seongbuk-gu 02792, Republic of Korea; Department of Biomolecular Science, University of Science & Technology (UST), Daejeon, Yuseong-gu 34113, Republic of Korea.
| |
Collapse
|
10
|
Gawad J, Bonde C. Decaprenyl-phosphoryl-ribose 2'-epimerase (DprE1): challenging target for antitubercular drug discovery. Chem Cent J 2018; 12:72. [PMID: 29936616 PMCID: PMC6015584 DOI: 10.1186/s13065-018-0441-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
Tuberculosis has proved harmful to the entire history of mankind from past several decades. Decaprenyl-phosphoryl-ribose 2′-epimerase (DprE1) is a recent target which was identified in 2009 but unfortunately it is neither explored nor crossed phase II. In past several decades few targets were identified for effective antitubercular drug discovery. Resistance is the major problem for effective antitubercular drug discovery. Arabinose is constituent of mycobacterium cell wall. Biosynthesis of arabinose is FAD dependant two step epimerisation reaction which is catalysed by DprE1 and DprE2 flavoprotein enzymes. The current review is mainly emphases on DprE1 as a perspective challenge for further research.
Collapse
Affiliation(s)
- Jineetkumar Gawad
- Department of Pharmaceutical Chemistry, SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur Dist, Dhule, Maharashtra, 425 405, India.
| | - Chandrakant Bonde
- Department of Pharmaceutical Chemistry, SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur Dist, Dhule, Maharashtra, 425 405, India
| |
Collapse
|
11
|
Diversity-oriented synthesis of amide derivatives of tricyclic thieno[2,3-d]pyrimidin-4(3H)-ones and evaluation of their influence on melanin synthesis in murine B16 cells. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2017-0256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
A diversity-oriented synthesis of amide-containing thieno[2,3-d]pyrimidin-4(3H)-ones is reported. All compounds were tested for their influence on melanin synthesis in murine B16 cells. The azepine fragment in thieno[2,3-d]pyrimidin-4(3H)-one skeleton significantly increases the melanin content.
Collapse
|
12
|
Wilding B, Klempier N. Newest Developments in the Preparation of Thieno[2,3-d]pyrimidines. ORG PREP PROCED INT 2017. [DOI: 10.1080/00304948.2017.1320513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- B. Wilding
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - N. Klempier
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
13
|
Borsari C, Ferrari S, Venturelli A, Costi MP. Target-based approaches for the discovery of new antimycobacterial drugs. Drug Discov Today 2017; 22:576-584. [DOI: 10.1016/j.drudis.2016.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/07/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022]
|
14
|
|