1
|
Vos E, Hoehn SJ, Krul SE, Crespo-Hernández CE, González-Vázquez J, Corral I. Disclosing the Role of C4-Oxo Substitution in the Photochemistry of DNA and RNA Pyrimidine Monomers: Formation of Photoproducts from the Vibrationally Excited Ground State. J Phys Chem Lett 2022; 13:2000-2006. [PMID: 35191712 PMCID: PMC8900130 DOI: 10.1021/acs.jpclett.2c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Oxo and amino substituted purines and pyrimidines have been suggested as protonucleobases participating in ancient pre-RNA forms. Considering electromagnetic radiation as a key environmental selection pressure on early Earth, the investigation of the photophysics of modified nucleobases is crucial to determine their viability as nucleobases' ancestors and to understand the factors that rule the photostability of natural nucleobases. In this Letter, we combine femtosecond transient absorption spectroscopy and quantum mechanical simulations to reveal the photochemistry of 4-pyrimidinone, a close relative of uracil. Irradiation of 4-pyrimidinone with ultraviolet radiation populates the S1(ππ*) state, which decays to the vibrationally excited ground state in a few hundred femtoseconds. Analysis of the postirradiated sample in water reveals the formation of a 6-hydroxy-5H-photohydrate and 3-(N-(iminomethyl)imino)propanoic acid as the primary photoproducts. 3-(N-(Iminomethyl)imino)propanoic acid originates from the hydrolysis of an unstable ketene species generated from the C4-N3 photofragmentation of the pyrimidine core.
Collapse
Affiliation(s)
- Eva Vos
- Departamento
de Química, Módulo 13, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Sean J. Hoehn
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Sarah E. Krul
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Carlos E. Crespo-Hernández
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Jesús González-Vázquez
- Departamento
de Química, Módulo 13, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Inés Corral
- Departamento
de Química, Módulo 13, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Morihiro K, Moriyama Y, Nemoto Y, Osumi H, Okamoto A. anti-syn Unnatural Base Pair Enables Alphabet-Expanded DNA Self-Assembly. J Am Chem Soc 2021; 143:14207-14217. [PMID: 34450012 DOI: 10.1021/jacs.1c05393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Self-assembly properties and diversity in higher-order structures of DNA enable programmable tools to be used to construct algorithms at the molecular level. However, the utility of DNA-based programmable tools is hampered by the low orthogonality to natural nucleic acids, especially in complex molecular systems. To address this challenge, we report here the orthogonal regulation of DNA self-assembly by using an unnatural base pair (UBP) formation. Our newly designed UBP AnN:SyN is formed in combination with anti and unusual syn glycosidic conformation with high thermal stability and selectivity. Furthermore, AnC worked as a pH-sensitive artificial nucleobase, which forms a strong base pair with cytosine under a weak acidic condition (pH 6.0). The orthogonal AnN:SyN base pair functioned as a trigger for hybridization chain reaction to provide long nicked double-stranded DNA (ca. 1000 base pairs). This work represents the first example of the orthogonal DNA self-assembly that is nonreactive to natural four-letter alphabets DNA trigger and expands the types of programmable tools that work in a complex environment.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuya Moriyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yui Nemoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiraki Osumi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Eberlein L, Beierlein FR, van Eikema Hommes NJR, Radadiya A, Heil J, Benner SA, Clark T, Kast SM, Richards NGJ. Tautomeric Equilibria of Nucleobases in the Hachimoji Expanded Genetic Alphabet. J Chem Theory Comput 2020; 16:2766-2777. [PMID: 32125859 DOI: 10.1021/acs.jctc.9b01079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Evolution has yielded biopolymers that are constructed from exactly four building blocks and are able to support Darwinian evolution. Synthetic biology aims to extend this alphabet, and we recently showed that 8-letter (hachimoji) DNA can support rule-based information encoding. One source of replicative error in non-natural DNA-like systems, however, is the occurrence of alternative tautomeric forms, which pair differently. Unfortunately, little is known about how structural modifications impact free-energy differences between tautomers of the non-natural nucleobases used in the hachimoji expanded genetic alphabet. Determining experimental tautomer ratios is technically difficult, and so, strategies for improving hachimoji DNA replication efficiency will benefit from accurate computational predictions of equilibrium tautomeric ratios. We now report that high-level quantum-chemical calculations in aqueous solution by the embedded cluster reference interaction site model, benchmarked against free-energy molecular simulations for solvation thermodynamics, provide useful quantitative information on the tautomer ratios of both Watson-Crick and hachimoji nucleobases. In agreement with previous computational studies, all four Watson-Crick nucleobases adopt essentially only one tautomer in water. This is not the case, however, for non-natural nucleobases and their analogues. For example, although the enols of isoguanine and a series of related purines are not populated in water, these heterocycles possess N1-H and N3-H keto tautomers that are similar in energy, thereby adversely impacting accurate nucleobase pairing. These robust computational strategies offer a firm basis for improving experimental measurements of tautomeric ratios, which are currently limited to studying molecules that exist only as two tautomers in solution.
Collapse
Affiliation(s)
- Lukas Eberlein
- Physikalische Chemie III, Technische Universität Dortmund, Dortmund 44227, Germany
| | - Frank R Beierlein
- Computer-Chemistry-Centre and Interdisciplinary Centre for Molecular Materials, Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Nico J R van Eikema Hommes
- Computer-Chemistry-Centre and Interdisciplinary Centre for Molecular Materials, Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Ashish Radadiya
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Jochen Heil
- Physikalische Chemie III, Technische Universität Dortmund, Dortmund 44227, Germany
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States
| | - Timothy Clark
- Computer-Chemistry-Centre and Interdisciplinary Centre for Molecular Materials, Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universität Dortmund, Dortmund 44227, Germany
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.,Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States
| |
Collapse
|
4
|
Levi-Acobas F, Röthlisberger P, Sarac I, Marlière P, Herdewijn P, Hollenstein M. On the Enzymatic Formation of Metal Base Pairs with Thiolated and pK a -Perturbed Nucleotides. Chembiochem 2019; 20:3032-3040. [PMID: 31216100 DOI: 10.1002/cbic.201900399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Indexed: 12/15/2022]
Abstract
The formation of artificial metal base pairs is an alluring and versatile method for the functionalization of nucleic acids. Access to DNA functionalized with metal base pairs is granted mainly by solid-phase synthesis. An alternative, yet underexplored method, envisions the installation of metal base pairs through the polymerization of modified nucleoside triphosphates. Herein, we have explored the possibility of using thiolated and pKa -perturbed nucleotides for the enzymatic construction of artificial metal base pairs. The thiolated nucleotides S2C, S6G, and S4T as well as the fluorinated analogue 5FU are readily incorporated opposite a templating S4T nucleotide through the guidance of metal cations. Multiple incorporation of the modified nucleotides along with polymerase bypass of the unnatural base pairs are also possible under certain conditions. The thiolated nucleotides S4T, S4T, S2C, and S6G were also shown to be compatible with the synthesis of modified, high molecular weight single-stranded (ss)DNA products through TdT-mediated tailing reactions. Thus, sulfur-substitution and pKa perturbation represent alternative strategies for the design of modified nucleotides compatible with the enzymatic construction of metal base pairs.
Collapse
Affiliation(s)
- Fabienne Levi-Acobas
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Pascal Röthlisberger
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Ivo Sarac
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Philippe Marlière
- University of Paris Saclay, CNRS, iSSB, UEVE, Genopole, 5 Rue Henri Desbruères, 91030, Evry, France
| | - Piet Herdewijn
- Department of Medicinal Chemistry, Institute for Medical Research, KU Leuven, Herestraat, 49, Leuven, 3000, Belgium
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
5
|
Jabgunde AM, Jaziri F, Bande O, Froeyen M, Abramov M, Nguyen H, Schepers G, Lescrinier E, Pinheiro VB, Pezo V, Marlière P, Herdewijn P. Methylated Nucleobases: Synthesis and Evaluation for Base Pairing In Vitro and In Vivo. Chemistry 2018; 24:12695-12707. [DOI: 10.1002/chem.201802304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/07/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Amit M. Jabgunde
- KU Leuven; Rega Institute; Medicinal Chemistry; Herestraat 49 box 1041 3000 Leuven Belgium
| | - Faten Jaziri
- Génomique Métabolique, Genoscope; Institut François Jacob; CEA; CNRS; Univ Evry, Université Paris-Saclay; 91057 Evry France
| | - Omprakash Bande
- KU Leuven; Rega Institute; Medicinal Chemistry; Herestraat 49 box 1041 3000 Leuven Belgium
| | - Matheus Froeyen
- KU Leuven; Rega Institute; Medicinal Chemistry; Herestraat 49 box 1041 3000 Leuven Belgium
| | - Mikhail Abramov
- KU Leuven; Rega Institute; Medicinal Chemistry; Herestraat 49 box 1041 3000 Leuven Belgium
| | - Hoai Nguyen
- KU Leuven; Rega Institute; Medicinal Chemistry; Herestraat 49 box 1041 3000 Leuven Belgium
| | - Guy Schepers
- KU Leuven; Rega Institute; Medicinal Chemistry; Herestraat 49 box 1041 3000 Leuven Belgium
| | - Eveline Lescrinier
- KU Leuven; Rega Institute; Medicinal Chemistry; Herestraat 49 box 1041 3000 Leuven Belgium
| | - Vitor B. Pinheiro
- Institute of Structural and Molecular Biology; University College London; Darwin Building, Gower Street London WC1E 6BT United Kingdom
| | - Valérie Pezo
- Génomique Métabolique, Genoscope; Institut François Jacob; CEA; CNRS; Univ Evry, Université Paris-Saclay; 91057 Evry France
| | - Philippe Marlière
- Génomique Métabolique, Genoscope; Institut François Jacob; CEA; CNRS; Univ Evry, Université Paris-Saclay; 91057 Evry France
| | - Piet Herdewijn
- KU Leuven; Rega Institute; Medicinal Chemistry; Herestraat 49 box 1041 3000 Leuven Belgium
| |
Collapse
|