1
|
Zhan Z, Liu X, Cheng Z. Enhancing lathyrane structural diversity and MDR activity by combinatorial modification of lathyrane nucleus and ester side chain: A case study of Euphorbia Factor L1 and Euphorbia Factor L3. Fitoterapia 2024; 174:105854. [PMID: 38331050 DOI: 10.1016/j.fitote.2024.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
The chemical transformation of lathyrane nucleus through reduction and oxidation reactions using Euphorbia Factor L1 (EFL1) and Euphorbia Factor L1 (EFL3) as examples were investigated, along with a co-modification strategy of lathyrane nucleus and its side ester chain. A total of 38 lathyrane derivatives (5-42) including 34 new compounds were obtained, which greatly enriched the structural diversity of the lathyrane-type diterpenoids. Cytotoxicity against drug-sensitive and drug (adriamycin, ADM) resistant MCF-7 cells showed that 23 out of 38 transformed derivatives possessed obvious cytotoxic activity with IC50 values ranging from 7.0 to 41.1 μM and 3.2 to 45.5 μM, respectively, against both cells, compared to the noncytotoxic EFL1 and EFL3. The multidrug resistance (MDR) reversing activities of these lathyrane derivatives were further evaluated in MCF-7/ADM. Three transformed compounds (reversal fold, RF = 151.33, 62.94 and 47.3 for 27, 37 and 42) showed markedly higher activity than EFL1 (RF = 32.92) and EFL3 (RF = 39.68). Structure-activity relationship study revealed an essential role of C-6/17 and C-12/13 double bonds on lathyrane nucleus for exerting MDR reversal activity. Western blotting analysis showed that 42 could reduce the expression level of P-glycoprotein (P-gp) in MCF-7/ADM cells; however, the most active compound 27 with an unnatural 5/7/7/4 fused-ring diterpenoid skeleton, had no inhibitory effect on P-gp expression.
Collapse
Affiliation(s)
- Zilong Zhan
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xin Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhihong Cheng
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
2
|
Fu J, Guo Q, Feng Y, Cheng P, Wu A. Dual role of fucosidase in cancers and its clinical potential. J Cancer 2022; 13:3121-3132. [PMID: 36046653 PMCID: PMC9414016 DOI: 10.7150/jca.75840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Glycosidases and glycosyltransferases greatly impact malignant phenotype of tumors though genetics and epigenetics mechanisms. As the member of glycoside hydrolase (GH) families 29A, α-L-fucosidases (AFUs) are involved in the hydrolysis of terminal L-fucose residues linked via α-1,2, α-1,3, α-1,4 or α-1,6 to the reducing end of N-acetyl glucosamine (GlcNAc) of oligosaccharide chains. The defucosylation process mediated by AFUs contributes to the development of various diseases, such as chronic inflammatory diseases, immune disorders, and autoimmune diseases by reducing the interaction between fucosylated adhesion molecules supporting leukocyte extravasation. AFUs also impair crucial cell-extracellular matrix (ECM) interactions and presumably subsequent cell signaling pathways, which lead to changes in tumor function and behavior. There are two isoforms of AFUs in human, namely α-L-fucosidase 1 (FUCA1) and α-L-fucosidase 2 (FUCA2), respectively. FUCA1 is a p53 target gene and can hydrolyze different fucosylation sites on epidermal growth factor receptor (EGFR), thereby determining the activation of EGFR. FUCA2 mediates the adhesion between Helicobacter pylori and gastric mucosa and is upregulated in 24 tumor types. Besides, based on the participation of AFU in signaling pathways and tumor progression, we discuss the prospect of AFU as a therapeutic target.
Collapse
Affiliation(s)
- Jinxing Fu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Qing Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Feng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Sharma B, Kumar V. Has Ferrocene Really Delivered Its Role in Accentuating the Bioactivity of Organic Scaffolds? J Med Chem 2021; 64:16865-16921. [PMID: 34792350 DOI: 10.1021/acs.jmedchem.1c00390] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ferrocene is an important structural core in bioorganometallic chemistry because of its inherent stability, excellent redox properties, and low toxicity. Ferroquine and ferrocifen are two of the most notable contributions of ferrocene to medicinal chemistry with remarkable antimalarial and anticancer properties. The improved medicinal properties of these drug candidates highlight the impact that ferrocene can have on the molecular and biological properties of the bioactive compounds. In this Perspective, we investigate the scope and limitations of ferrocene incorporation into organic compounds/natural products on their mode of action and biological activities. We have also discussed the detailed role of ferrocene modifications in influencing the anticancer, antimalarial, and antimicrobial properties of various bioactive moieties to design safer and promising ferrocene-based drugs.
Collapse
Affiliation(s)
- Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
4
|
Franconetti A, López Ó, Fernandez-Bolanos JG. Carbohydrates: Potential Sweet Tools Against Cancer. Curr Med Chem 2020; 27:1206-1242. [DOI: 10.2174/0929867325666180719114150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
:Cancer, one of the most devastating degenerative diseases nowadays, is one of the main targets in Medicinal Chemistry and Pharmaceutical industry. Due to the significant increase in the incidence of cancer within world population, together with the complexity of such disease, featured with a multifactorial nature, access to new drugs targeting different biological targets connected to cancer is highly necessary.:Among the vast arsenal of compounds exhibiting antitumor activities, this review will cover the use of carbohydrate derivatives as privileged scaffolds. Their hydrophilic nature, together with their capacity of establishing selective interactions with biological receptors located on cell surface, involved in cell-to-cell communication processes, has allowed the development of an ample number of new templates useful in cancer treatment.:Their intrinsic water solubility has allowed their use as of pro-drug carriers for accessing more efficiently the pharmaceutical targets. The preparation of glycoconjugates in which the carbohydrate is tethered to a pharmacophore has also allowed a better permeation of the drug through cellular membranes, in which selective interactions with the carbohydrate motifs are involved. In this context, the design of multivalent structures (e.g. gold nanoparticles) has been demonstrated to enhance crucial interactions with biological receptors like lectins, glycoproteins that can be involved in cancer progression.:Moreover, the modification of the carbohydrate structural motif, by incorporation of metal complexes, or by replacing their endocyclic oxygen, or carbon atoms with heteroatoms has led to new antitumor agents.:Such diversity of sugar-based templates with relevant antitumor activity will be covered in this review.
Collapse
Affiliation(s)
- Antonio Franconetti
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | - Óscar López
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
5
|
Wang R, Chen H, Yan W, Zheng M, Zhang T, Zhang Y. Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. Eur J Med Chem 2020; 190:112109. [PMID: 32032851 DOI: 10.1016/j.ejmech.2020.112109] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Cancer is one of the most fatal threatens to human health throughout the world. The major challenges in the control and eradication of cancers are the continuous emergency of drug-resistant cancer and the low specificity of anticancer agents, creating an urgent need to develop novel anticancer agents. Organometallic compounds especially ferrocene derivatives possess remarkable structural and mechanistic diversity, inherent stability towards air, heat and light, low toxicity, low cost, reversible redox, ligand exchange, and catalytic properties, making them promising drug candidates for cancer therapy. Ferrocifen, a ferrocene-phenol hybrid, has demonstrated promising anticancer properties on drug-resistant cancers. Currently, Ferrocifen is in pre-clinical trial against cancers. Obviously, ferrocene moiety is a useful template for the development of novel anticancer agents. This review will provide an overview of ferrocene-containing hybrids with potential application in the treatment of cancers covering articles published between 2010 and 2020. The mechanisms of action, the critical aspects of design and structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Ruo Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Huahong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Weitao Yan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingwen Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Tesen Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yaohuan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
6
|
Mazur M, Mrozowicz M, Buchowicz W, Koszytkowska-Stawińska M, Kamiński R, Ochal Z, Wińska P, Bretner M. Formylation of a metathesis-derived ansa[4]-ferrocene: a simple route to anticancer organometallics. Dalton Trans 2020; 49:11504-11511. [DOI: 10.1039/d0dt01975e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ansa-Ferrocenealdehyde, obtained by formylation of a metathesis-derived ansa-ferrocene, was transformed into a conjugate with triazole and uracil with anticancer activity.
Collapse
Affiliation(s)
- Maria Mazur
- Faculty of Chemistry
- Chair of Organic Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Michał Mrozowicz
- Faculty of Chemistry
- Chair of Organic Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Włodzimierz Buchowicz
- Faculty of Chemistry
- Chair of Organic Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | | | | | - Zbigniew Ochal
- Faculty of Chemistry
- Chair of Drug and Cosmetics Biotechnology
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Patrycja Wińska
- Faculty of Chemistry
- Chair of Drug and Cosmetics Biotechnology
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Maria Bretner
- Faculty of Chemistry
- Chair of Drug and Cosmetics Biotechnology
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| |
Collapse
|
7
|
Khanvilkar P, Pulipaka R, Shirsath K, Devkar R, Chakraborty D. Binuclear ruthenium(II) complexes of 4,4′-azopyridine bridging ligand as anticancer agents: synthesis, characterization, and in vitro cytotoxicity studies. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1672049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Priyanka Khanvilkar
- Department of Chemistry, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ramadevi Pulipaka
- Department of Chemistry, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kavita Shirsath
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ranjitsinh Devkar
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Debjani Chakraborty
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
8
|
Zubair S, Asghar F, Badshah A, Lal B, Hussain RA, Tabassum S, Tahir MN. New bioactive ferrocene-substituted heteroleptic copper(I) complex: Synthesis, structural elucidation, DNA interaction, and DFT study. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Prasad SS, Reddy NR, Baskaran S. One-Pot Synthesis of Structurally Diverse Iminosugar-Based Hybrid Molecules. J Org Chem 2018; 83:9604-9618. [DOI: 10.1021/acs.joc.8b00748] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sure Siva Prasad
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Sundarababu Baskaran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
|
11
|
Larik FA, Saeed A, Fattah TA, Muqadar U, Channar PA. Recent advances in the synthesis, biological activities and various applications of ferrocene derivatives. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3664] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fayaz Ali Larik
- Department of Chemistry; Quaid-i-Azam University; 45320 Islamabad Pakistan
| | - Aamer Saeed
- Department of Chemistry; Quaid-i-Azam University; 45320 Islamabad Pakistan
| | | | - Urooj Muqadar
- Department of Chemistry; Quaid-i-Azam University; 45320 Islamabad Pakistan
| | | |
Collapse
|
12
|
Stütz AE, Wrodnigg TM. Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as Correcting Pharmacological Chaperones. Adv Carbohydr Chem Biochem 2016; 73:225-302. [PMID: 27816107 DOI: 10.1016/bs.accb.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lysosomal storage diseases are hereditary disorders caused by mutations on genes encoding for one of the more than fifty lysosomal enzymes involved in the highly ordered degradation cascades of glycans, glycoconjugates, and other complex biomolecules in the lysosome. Several of these metabolic disorders are associated with the absence or the lack of activity of carbohydrate-processing enzymes in this cell compartment. In a recently introduced therapy concept, for susceptible mutants, small substrate-related molecules (so-called pharmacological chaperones), such as reversible inhibitors of these enzymes, may serve as templates for the correct folding and transport of the respective protein mutant, thus improving its concentration and, consequently, its enzymatic activity in the lysosome. Carbohydrate-processing enzymes in the lysosome, related lysosomal diseases, and the scope and limitations of reported reversible inhibitors as pharmacological chaperones are discussed with a view to possibly extending and improving research efforts in this area of orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
13
|
Affiliation(s)
- Didier Astruc
- ISM, UMR CNRS 5255; Univ. Bordeaux; 33405 Talence Cedex France
| |
Collapse
|
14
|
Malinowski M, Rowicki T, Guzik P, Wielechowska M, Sobiepanek A, Sas W. Diversity-Oriented Synthesis and Biological Evaluation of Iminosugars from Unprotected 2-Deoxy-d
-ribose. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Maciej Malinowski
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Tomasz Rowicki
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Patrycja Guzik
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Monika Wielechowska
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Anna Sobiepanek
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Wojciech Sas
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|