1
|
Da Silva AF, França SB, Costa LFDL, Dos Santos RA, Pinheiro NDA, Barros MEDSB, Lima DJDP. Cinnamamides: a review of research in the agrochemical field. PEST MANAGEMENT SCIENCE 2024. [PMID: 39579043 DOI: 10.1002/ps.8559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
The need for implementation of economically viable agrochemicals with lower toxicity and that are capable of overcoming resistance developed by insects, fungi and invasive plants has spurred the scientific community in the search for new active and selective substances and synthetic methodologies that adhere to the parameters of green chemistry. Cinnamamides, in turn, present a scaffold that has been a basis for various investigations due to their broad spectrum of biological activities. The agrochemical industry is a vast field in which these classes of compounds stand out, whether for their potential herbicidal, fungicidal, nematicidal, or insecticidal properties. Therefore, this review reports the progress of synthesis and the agrochemical potential of cinnamamides, their mechanism of action, and their structure-activity relationship (SAR), to provide insights for further research addressing the use of cinnamamides in crop protection. © 2024 Society of Chemical Industry.
Collapse
|
2
|
Fu XJ, Huang J, Li N, Liu YH, Liu QG, Yuan S, Xu Y, Chen YF, Zhao YX, Song J, Zhang SY, Bai YR. Design, synthesis and biological evaluation of N-benzylaryl cinnamide derivatives as tubulin polymerization inhibitors capable of promoting YAP degradation with potent anti-gastric cancer activities. Eur J Med Chem 2023; 262:115883. [PMID: 39491429 DOI: 10.1016/j.ejmech.2023.115883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
In this work, we utilized the N-benzylaryl derivative 9 as a lead compound and employed the molecular hybridization strategy by introducing cinnamoyl fragments to successfully design and synthesize 33 novel N-benzylaryl cinnamide derivatives 15a∼15 ag. The in vitro antiproliferative activities were explored, and the preliminary analysis and summary of their structure-activity relationship were conducted. The majority of the compounds demonstrated significant inhibitory potency on MGC-803, HCT-116 and KYSE450 cells with IC50 values below 0.5 μM. Among them, compound 15e (MY-1076) exhibited the most effective effect on the proliferative inhibition of MGC-803, SGC-7901, HCT-116 and KYSE450 cells with IC50 values of 0.019, 0.017, 0.020 and 0.044 μM, respectively, which is more potent than colchicine and the lead compound 9. Additionally, compound 15e (MY-1076) still exhibited significant inhibitory proliferation activity against 13 other types of tumor cells (IC50 values < 0.1 μM). Further studies revealed that compound 15e (MY-1076) could effectively inhibit tubulin polymerization by acting on the β-tubulin colchicine binding site, thereby disrupting microtubule network assembly and mitotic progression. Additionally, compound 15e (MY-1076) also demonstrated a notable inhibitory effect on the oncogenic protein YAP by inducing its degradation. Compound 15e (MY-1076) could dose-dependently induce G2/M phase arrest and cell apoptosis, effectively inhibit the colony formatting ability and cause morphological changes in MGC-803 and SGC-7901 cells. Compound 15e (MY-1076) exhibited significant regulatory effects on the expression levels of cell cycle and apoptosis-related proteins. Taken together, we here reported a novel N-benzylaryl cinnamide derivative 15e (MY-1076) as a tubulin polymerization inhibitor capable of promoting degradation of YAP, which held great potential as an anti-gastric cancer agent.
Collapse
Affiliation(s)
- Xiang-Jing Fu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Jiao Huang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Fan Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu-Xuan Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yi-Ru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| |
Collapse
|
3
|
Roshan MK, Afshari AR, Mirzavi F, Mousavi SH, Soukhtanloo M. Combretastatin A-4 suppresses the invasive and metastatic behavior of glioma cells and induces apoptosis in them: in-vitro study. Med Oncol 2023; 40:331. [PMID: 37838642 DOI: 10.1007/s12032-023-02197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
The most common primary brain malignancy, glioblastoma multiforme, is tremendously resistant to conventional treatments due to its potency for metastasis to surrounding brain tissue. Temozolomide is a chemotherapeutic agent that currently is administrated during the treatment procedure. Studies have attempted to investigate new agents with higher effectiveness and fewer side effects. Combretastatin A-4 (CA-4), a natural compound derived from Combretum caffrum, has been recently considered for its potent antitumor activities in a wide variety of preclinical solid tumor models. Our findings have shown that CA-4 exerts potent anti-proliferative and apoptotic effects on glioma cells, and ROS generation may be involved in these cellular events. CA-4 has imposed G2 arrest in U-87 cells. We also observed that CA-4 significantly reduced the migration and invasion capability of U-87 cells. Furthermore, the gene expression and enzyme activity of MMP-2 and MMP-9 were significantly inhibited in the presence of CA-4. We also observed a considerable decrease in PI3K and Akt protein expression following treatment with CA-4. In conclusion, our findings showed significant apoptogenic and anti-metastatic effects of CA-4 on glioma cells and also suggested that the PI3K/Akt/MMP-2/-9 and also ROS pathway might play roles in these cellular events.
Collapse
Affiliation(s)
- Mostafa Karimi Roshan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Hadi Mousavi
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Villamizar–Mogotocoro A, Kouznetsov VV. Simple and efficient microwave-assisted synthesis of new N-biphenyl cinnamamides/3-arylpropanamides and C6-substituted phenanthridines. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Li B, Wang J, Yuan M, Miao Y, Zhang H, Zhang J. Design, synthesis, and biological evaluation of tetrahydroisoquinoline stilbene derivatives as potential antitumor candidates. Chem Biol Drug Des 2023; 101:364-379. [PMID: 36054251 DOI: 10.1111/cbdd.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/31/2022] [Accepted: 08/14/2022] [Indexed: 01/14/2023]
Abstract
Herein, a novel class of tetrahydroisoquinoline stilbene derivatives were synthesized, and their potential in vitro anticancer activities were evaluated. Most of the compounds displayed inhibitory activity against one or more representative human cancer cell lines (lung cancer A549 cells, breast cancer MCF-7 cells, and human colorectal carcinoma HT-29 cells), especially compound 16e, which exhibited outstanding cytotoxicity to A549 cells. The tubulin polymerization assay demonstrated that compound 16e displayed better inhibition than colchicine when tested at the same concentration. It was found that 16e arrested A549 cells in G2/M phase by downregulating the expression of cell division cycle 2 (Cdc2) and upregulating the expression of proliferating cell nuclear antigen (PCNA) and cyclin B1. Flow cytometry and Western blot analysis indicated that 16e caused apoptosis via the mitochondrial-dependent apoptotic pathway by reducing mitochondrial membrane potential, inducing ROS accumulation, promoting the release of cytochrome C from the mitochondria into the cytoplasm, and further increasing the protein level of cleaved caspase-3. This work may inspire new ideas for the further improvement of tubulin-related anticancer drugs and treatments.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry, Bengbu Medical College, Bengbu, China
| | - Jie Wang
- Department of Chemistry, Bengbu Medical College, Bengbu, China
| | - Ming Yuan
- Department of Chemistry, Bengbu Medical College, Bengbu, China
| | - Yuchen Miao
- Department of Chemistry, Bengbu Medical College, Bengbu, China
| | - Hui Zhang
- Department of Chemistry, Bengbu Medical College, Bengbu, China
| | - Junjie Zhang
- Department of Chemistry, Bengbu Medical College, Bengbu, China
| |
Collapse
|
6
|
Paidakula S, Nerella S, Kankala S, Kankala RK. Recent Trends in Tubulin-Binding Combretastatin A-4 Analogs for Anticancer Drug Development. Curr Med Chem 2021; 29:3748-3773. [PMID: 34856892 DOI: 10.2174/0929867328666211202101641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/20/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Although significant progress over several decades has been evidenced in cancer therapy, there still remains a need for the development of novel and effective therapeutic strategies to treat several relapsed and intractable cancers. In this regard, tubulin protein has become one of the efficient and major targets for anticancer drug discovery. Considering the antimitotic ability, several tubulin inhibitors have been developed to act against various cancers. Among various tubulin inhibitors available, combretastatin-A4 (CA-4), a naturally occurring lead molecule, offers exceptional cytotoxicity (including the drug-resistant cell lines) and antivascular effects. Although CA-4 offers exceptional therapeutic efficacy, several new advancements have been proposed, such as the structural modification via A and B rings, as well as cis-olefinic bridging, which provide highly efficient analogs with improved tubulin-binding efficiency to meet the anticancer drug development requirements. This review systematically emphasizes the recent trends and latest developments in the anticancer drug design & discovery, using CA-4 analogs as the tubulin inhibiting agents, highlighting their structure-activity relationships (SAR) and resultant pharmacological efficacies.
Collapse
Affiliation(s)
- Suresh Paidakula
- Department of Chemistry, Kakatiya University, Warangal-506009, Telangana State. India
| | - Srinivas Nerella
- Department of Chemistry, Kakatiya University, Warangal-506009, Telangana State. India
| | - Shravankumar Kankala
- Department of Chemistry, Kakatiya University, Warangal-506009, Telangana State. India
| | | |
Collapse
|
7
|
Trimethoxycinnamates and Their Cholinesterase Inhibitory Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of twelve nature-inspired 3,4,5-trimethoxycinnamates were prepared and characterized. All compounds, including the starting 3,4,5-trimethoxycinnamic acid, were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro; the selectivity index (SI) was also determined. 2-Fluororophenyl (2E)-3-(3,4,5-trimethoxyphenyl)-prop-2-enoate demonstrated the highest SI (1.71) in favor of BChE inhibition. 2-Chlorophenyl (2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate showed the highest AChE-inhibiting (IC50 = 46.18 µM) as well as BChE-inhibiting (IC50 = 32.46 µM) activity with an SI of 1.42. The mechanism of action of the most potent compound was determined by the Lineweaver–Burk plot as a mixed type of inhibition. An in vitro cell viability assay confirmed the insignificant cytotoxicity of the discussed compounds on the two cell lines. Trends between structure, physicochemical properties and activity were discussed.
Collapse
|
8
|
Gaikwad N, Nanduri S, Madhavi YV. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur J Med Chem 2019; 181:111561. [PMID: 31376564 DOI: 10.1016/j.ejmech.2019.07.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023]
Abstract
The cinnamamide (cinnamic acid amide and cinnamide) is a privileged scaffold present widely in a number of natural products. The scaffold acts as a useful template for designing and arriving at newly drug-like molecules with potential pharmacological activity. An attempt has been made to review the extensive occurrence of cinnamamide scaffold in many lead compounds reported for treating various diseases, their binding interactions with the therapeutic targets as well as mechanism of action and their structure-activity relationships. The discoveries of cinnamamide systems and some examples of unusual cinnamamides having an aromatic, aliphatic, and heterocyclic or other rings condensed to the basic cinnamamide structure also have been extensively covered in this review.
Collapse
Affiliation(s)
- Nikhil Gaikwad
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 40, Dilip Rd, Jinkalwada, Balanagar, Hyderabad, Telangana, 500037, India
| | - Srinivas Nanduri
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 40, Dilip Rd, Jinkalwada, Balanagar, Hyderabad, Telangana, 500037, India
| | - Y V Madhavi
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 40, Dilip Rd, Jinkalwada, Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
9
|
Zhao Z, Song H, Xie J, Liu T, Zhao X, Chen X, He X, Wu S, Zhang Y, Zheng X. Research progress in the biological activities of 3,4,5-trimethoxycinnamic acid (TMCA) derivatives. Eur J Med Chem 2019; 173:213-227. [PMID: 31009908 PMCID: PMC7115657 DOI: 10.1016/j.ejmech.2019.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 01/02/2023]
Abstract
TMCA (3,4,5-trimethoxycinnamic acid) ester and amide are privileged structural scaffolds in drug discovery which are widely distributed in natural products and consequently produced diverse therapeutically relevant pharmacological functions. Owing to the potential of TMCA ester and amide analogues as therapeutic agents, researches on chemical syntheses and modifications have been carried out to drug-like candidates with broad range of medicinal properties such as antitumor, antiviral, CNS (central nervous system) agents, antimicrobial, anti-inflammatory and hematologic agents for a long time. At the same time, SAR (structure-activity relationship) studies have draw greater attention among medicinal chemists, and many of the lead compounds were derived for various disease targets. However, there is an urgent need for the medicinal chemists to further exploit the precursor in developing chemical entities with promising bioactivity and druggability. This review concisely summarizes the synthesis and biological activity for TMCA ester and amide analogues. It also comprehensively reveals the relationship of significant biological activities along with SAR studies. 3,4,5-Trimethoxycinnamic acid (TMCA) derivatives show applications in different pathophysiological conditions due to its privileged structural scaffolds. Natural derived TMCA analogues and chemically modified TMCA ester and amide analogues and their bioactivities are focused in this review. Additionally, it also comprehensively summarized the relationship of significant biological activities along with SAR studies of synthetic TMCA derivatives.
Collapse
Affiliation(s)
- Zefeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Huanhuan Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jing Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Tian Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xufei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xirui He
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China; Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China.
| |
Collapse
|
10
|
Hybrid cis-stilbene Molecules: Novel Anticancer Agents. Int J Mol Sci 2019; 20:ijms20061300. [PMID: 30875859 PMCID: PMC6471163 DOI: 10.3390/ijms20061300] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
The growing interest in anticancer hybrids in the last few years has resulted in a great number of reports on hybrid design, synthesis and bioevaluation. Many novel multi-target-directed drug candidates were synthesized, and their biological activities were evaluated. For the design of anticancer hybrid compounds, the molecules of stilbenes, aromatic quinones, and heterocycles (benzimidazole, imidazole, pyrimidine, pyridine, pyrazole, quinoline, quinazoline) were applied. A distinct group of hybrids comprises the molecules built with natural compounds: Resveratrol, curcumin, coumarin, and oleanolic acid. In this review, we present the studies on bioactive hybrid molecules of a well-known tubulin polymerization inhibitor, combretastatin A-4 and its analogs with other pharmacologically active entities. The mechanism of anticancer activity of selected hybrids is discussed considering the structure-activity relationship.
Collapse
|
11
|
Design, synthesis and biological evaluation of (E)-3-(3,4,5-trimethoxyphenyl) acrylic acid (TMCA) amide derivatives as anticonvulsant and sedative agents. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2228-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
A molecular modeling study of combretastatin-like chalcones as anticancer agents using PLS, ANN and consensus models. Struct Chem 2018. [DOI: 10.1007/s11224-017-1072-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Li L, Jiang S, Li X, Liu Y, Su J, Chen J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur J Med Chem 2018; 151:482-494. [PMID: 29649743 DOI: 10.1016/j.ejmech.2018.04.011] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Microtubules (composed of α- and β-tubulin heterodimers) play a pivotal role in mitosis and cell division, and are regarded as an excellent target for chemotherapeutic agents to treat cancer. There are four unique binding sites in tubulin to which taxanes, vinca alkaloids, laulimalide and colchicine bind respectively. While several tubulin inhibitors that bind to the taxane or vinca alkaloid binding sites have been approved by FDA, currently there are no FDA approved tubulin inhibitors targeting the colchicine binding site. Tubulin inhibitors that bind to the colchicine binding site have therapeutic advantages over taxanes and vinca alkaloids, for example, they can be administered orally, have less drug-drug interaction potential, and are less prone to develop multi-drug resistance. Typically, tubulin inhibitors that bind to the colchicine binding site bear the trimethoxyphenyl (TMP) moiety which is essential for interaction with tubulin. Over the last decade, a variety of molecules bearing the TMP moiety have been designed and synthesized as tubulin inhibitors for cancer treatment. In this review, we focus on the TMP analogs that are designed based on CA-4, indole, chalcone, colchicine and natural product scaffolds which are known to interact with the colchicine binding site in tubulin. The challenges and future direction of the TMP based tubulin inhibitors are also discussed in detail.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Sibo Jiang
- College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Xiaoxun Li
- Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu 611731, China
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
El-Sherief HAM, Youssif BGM, Bukhari SNA, Abdel-Aziz M, Abdel-Rahman HM. Novel 1,2,4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorg Chem 2017; 76:314-325. [PMID: 29227915 DOI: 10.1016/j.bioorg.2017.12.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/31/2017] [Accepted: 12/03/2017] [Indexed: 02/01/2023]
Abstract
A series of novel compounds carrying 1,2,4-triazole scaffold was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines using MTT assay. Compounds 8a, 8b, 8c, 8d, 10b, 10e, and 10 g showed remarkable antiproliferative activity against the tested cell lines. Compounds 8a, 8b, 8c, 8d, 10b, 10e, and 10 g with the least IC50 values in MTT assay were tested against three known anticancer targets including EGFR, BRAF and Tubulin. The results revealed that compounds 8c and 8d showed almost same BRAF inhibitory activity and were discovered to be potent inhibitors of cancer cell proliferation and were also observed to be strong Tubulin inhibitors. Moreover, 8c also showed the best EGFR inhibition with IC50 = 3.6 μM. Finally molecular modeling studies were performed to explore the binding mode of the most active compounds to the target enzymes.
Collapse
Affiliation(s)
- Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-suef, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka 2014, Saudi Arabia
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka 2014, Saudi Arabia.
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka 2014, Saudi Arabia
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Hamdy M Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-suef, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
15
|
Quayle LA, Pereira MG, Scheper G, Wiltshire T, Peake RE, Hussain I, Rea CA, Bates TE. Anti-angiogenic drugs: direct anti-cancer agents with mitochondrial mechanisms of action. Oncotarget 2017; 8:88670-88688. [PMID: 29179466 PMCID: PMC5687636 DOI: 10.18632/oncotarget.20858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/17/2017] [Indexed: 12/15/2022] Open
Abstract
Components of the mitochondrial electron transport chain have recently gained much interest as potential therapeutic targets. Since mitochondria are essential for the supply of energy that is required for both angiogenic and tumourigenic activity, targeting the mitochondria represents a promising potential therapeutic approach for treating cancer. Here we investigate the established anti-angiogenesis drugs combretastatin A4, thalidomide, OGT 2115 and tranilast that we hypothesise are able to exert a direct anti-cancer effect in the absence of vasculature by targeting the mitochondria. Drug cytotoxicity was measured using the MTT assay. Mitochondrial function was measured in intact isolated mitochondria using polarography, fluorimetry and enzymatic assays to measure mitochondrial oxygen consumption, membrane potential and complex I-IV activities respectively. Combretastatin A4, OGT 2115 and tranilast were both shown to decrease mitochondrial oxygen consumption. OGT 2115 and tranilast decreased mitochondrial membrane potential and reduced complex I activity while combretastatin A4 and thalidomide did not. OGT 2115 inhibited mitochondrial complex II-III activity while combretastatin A4, thalidomide and tranilast did not. Combretastatin A4, thalidomide and OGT 2115 induced bi-phasic concentration-dependent increases and decreases in mitochondrial complex IV activity while tranilast had no evident effect. These data demonstrate that combretastatin A4, thalidomide, OGT 2115 and tranilast are all mitochondrial modulators. OGT 2115 and tranilast are both mitochondrial inhibitors capable of eliciting concentration-dependent reductions in cell viability by decreasing mitochondrial membrane potential and oxygen consumption.
Collapse
Affiliation(s)
- Lewis A Quayle
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K.,Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, S10 2RX, U.K
| | - Maria G Pereira
- School of Pharmacy, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Gerjan Scheper
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Tammy Wiltshire
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Ria E Peake
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Issam Hussain
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Carol A Rea
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Timothy E Bates
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K.,Drugs With A Difference Limited, BioCity Nottingham, Nottingham, NG1 1GF, U.K.,Marlin Therapeutics Limited, Nottingham Science Park, Nottingham, NG7 2RF, U.K
| |
Collapse
|
16
|
Seddigi ZS, Malik MS, Saraswati AP, Ahmed SA, Babalghith AO, Lamfon HA, Kamal A. Recent advances in combretastatin based derivatives and prodrugs as antimitotic agents. MEDCHEMCOMM 2017; 8:1592-1603. [PMID: 30108870 DOI: 10.1039/c7md00227k] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023]
Abstract
The dynamic and crucial role of tubulin in different cellular functions rendered it a promising target in anticancer drug development. Combretastatin A-4 (CA-4), an inhibitor of tubulin polymerization isolated from natural sources, is a lead molecule with significant cytotoxicity against tumour cells. Owing to its non polar nature it exhibits low solubility in natural biological fluids, thereby prompting the development of new CA-4 based derivatives. The modification of this lead molecule was mostly carried out by keeping the crucial cis-orientation of the double bond intact, along with a trimethoxyphenyl aromatic ring, by employing different approaches. The issue of solubility was also addressed by the development of water soluble prodrugs of CA-4. The present review highlights the investigations into the parallel development of both new CA-4 based derivatives and prodrugs in the past few years.
Collapse
Affiliation(s)
- Zaki S Seddigi
- Department of Environmental Health , College of Public Health and Health Informatics , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - M Shaheer Malik
- Science and Technology Unit , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - A Prasanth Saraswati
- Department of Medicinal Chemistry and Pharmacology , CSIR - Indian Institute of Chemical Technology , Hyderabad 500 007 , India . ; ; Tel: +91 40 27193157
| | - Saleh A Ahmed
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Ahmed O Babalghith
- Department of Medical Genetics, Faculty of Medicine , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Hawazen A Lamfon
- Department of Biology , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Ahmed Kamal
- Department of Medicinal Chemistry and Pharmacology , CSIR - Indian Institute of Chemical Technology , Hyderabad 500 007 , India . ; ; Tel: +91 40 27193157
| |
Collapse
|
17
|
Bukhari SNA, Kumar GB, Revankar HM, Qin HL. Development of combretastatins as potent tubulin polymerization inhibitors. Bioorg Chem 2017; 72:130-147. [PMID: 28460355 DOI: 10.1016/j.bioorg.2017.04.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/22/2017] [Accepted: 04/13/2017] [Indexed: 11/18/2022]
Abstract
The combretastatins are isolated from South African tree combretum caffrum kuntze. The lead compound combretastatin A-4 has displayed remarkable cytotoxic effect in a wide variety of preclinical tumor models and inhibits tubulin polymerization by interacting at colchicine binding site of microtubule. However, the structural simplicity of C A-4 is favorable for synthesis of various derivatives projected to induce rapid and selective vascular shutdown in tumors. Majority of the molecules have shown excellent antiproliferative activity and are able to inhibit tubulin polymerization as well as possible mechanisms of action have been investigated. In this review article, the synthesis and structure-activity relationships of C A-4 and immense number of its synthetic derivatives with various modifications on the A, B-rings, bridge carbons and their anti mitotic activities are discussed.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China; Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka 2014, Saudi Arabia.
| | - Gajjela Bharath Kumar
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hrishikesh Mohan Revankar
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
18
|
Qin HL, Leng J, Youssif BGM, Amjad MW, Raja MAG, Hussain MA, Hussain Z, Kazmi SN, Bukhari SNA. Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents. Chem Biol Drug Des 2017; 90:443-449. [DOI: 10.1111/cbdd.12964] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/22/2017] [Accepted: 01/28/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Hua-Li Qin
- Department of Pharmaceutical Engineering; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; Wuhan China
| | - Jing Leng
- Department of Pharmaceutical Engineering; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; Wuhan China
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry; Faculty of Pharmacy; Assiut University; Assiut Egypt
- Department of Pharmaceutical Chemistry; College of Pharmacy; Aljouf University; Sakaka Saudi Arabia
| | | | | | | | - Zahid Hussain
- Faculty of Pharmacy; Universiti Teknologi MARA; Puncak Alam Selangor Malaysia
| | - Syeda Naveed Kazmi
- Department of Mathematics; Capital University of Science and Technology (CUST); Islamabad Pakistan
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Engineering; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; Wuhan China
- Department of Pharmaceutical Chemistry; College of Pharmacy; Aljouf University; Sakaka Saudi Arabia
| |
Collapse
|
19
|
Elmeligie S, Khalil NA, Ahmed EM, Emam SH. New 3-Substituted-2-(4-hydroxyanilino)pyridine Derivatives: Synthesis, Antitumor Activity, and Tubulin Polymerization Inhibition. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201600256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/31/2016] [Accepted: 01/04/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Salwa Elmeligie
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry; Cairo University; Cairo Egypt
| | - Nadia A. Khalil
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry; Cairo University; Cairo Egypt
| | - Eman M. Ahmed
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry; Cairo University; Cairo Egypt
| | - Soha H. Emam
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry; Cairo University; Cairo Egypt
| |
Collapse
|
20
|
Li YH, Zhang B, Yang HK, Li Q, Diao PC, You WW, Zhao PL. Design, synthesis, and biological evaluation of novel alkylsulfanyl-1,2,4-triazoles as cis-restricted combretastatin A-4 analogues. Eur J Med Chem 2016; 125:1098-1106. [PMID: 27810596 DOI: 10.1016/j.ejmech.2016.10.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/25/2016] [Accepted: 10/21/2016] [Indexed: 01/29/2023]
Abstract
Thirty-two novel 3-alkylsulfanyl-1,2,4-triazole derivatives, designed as cis-restricted combretastatin A-4 analogues, were synthesized and evaluated for their antiproliferative activities. The results indicated that analogue 20 showed more potent antiproliferative activities against PC-3 cell lines than positive control CA-4. Particularly, the most promising compound 25 displayed 5-fold improvement compared to CA-4 in inhibiting HCT116 cell proliferation with IC50 values of 1.15 μM. Further flow-activated cell sorting analysis revealed that compound 20 displayed a significant effect on G2/M cell-cycle arrest in a dose-dependent manner in PC-3 cells. From this study, analogues 20 and 25 were the most potent anti-cancer agents in this structural class, and were considered lead compounds for further development as anti-cancer drugs.
Collapse
Affiliation(s)
- Yan-Hong Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Hai-Kui Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Qiu Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Peng-Cheng Diao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|