1
|
England E, Morris JW, Bussy C, Hancox JC, Shiels HA. The key characteristics of cardiotoxicity for the pervasive pollutant phenanthrene. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133853. [PMID: 38503207 DOI: 10.1016/j.jhazmat.2024.133853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
The key characteristic (KCs) framework has been used previously to assess the carcinogenicity and cardiotoxicity of various chemical and pharmacological agents. Here, the 12 KCs of cardiotoxicity are used to evaluate the previously reported cardiotoxicity of phenanthrene (Phe), a tricyclic polycyclic aromatic hydrocarbon (PAH), and major component of fossil fuel-derived air pollution. Phe is a semi-volatile pollutant existing in both the gas phase and particle phase through adsorption onto or into particulate matter (PM). Phe can translocate across the airways and gastrointestinal tract into the systemic circulation, enabling body-wide effects. Our evaluation based on a comprehensive literature review, indicates Phe exhibits 11 of the 12 KCs for cardiotoxicity. These include adverse effects on cardiac electromechanical performance, the vasculature and endothelium, immunomodulation and oxidative stress, and neuronal and endocrine control. Environmental agents that have similarly damaging effects on the cardiovascular system are heavily regulated and monitored, yet globally there is no air quality regulation specific for PAHs like Phe. Environmental monitoring of Phe is not the international standard with benzo[a]pyrene being frequently used as a proxy despite the two PAH species exhibiting significant differences in sources, concentration variations and toxic effects. The evidence summarised in this evaluation highlights the need to move away from proxied PAH measurements and develop a monitoring network capable of measuring Phe concentration. It also stresses the need to raise awareness amongst the medical community of the potential cardiovascular impact of PAH exposure. This will allow the production of mitigation strategies and possibly the development of new policies for the protection of the societal groups most vulnerable to cardiovascular disease.
Collapse
Affiliation(s)
- E England
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - J W Morris
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - C Bussy
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - J C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - H A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Assessment of Antioxidant, Anti-Lipid Peroxidation, Antiglycation, Anti-Inflammatory and Anti-Tyrosinase Properties of Dendrobium sulcatum Lindl. COSMETICS 2023. [DOI: 10.3390/cosmetics10020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Dendrobium sulcatum Lindl or “Ueang Jampa-Nan” (Orchidaceae family) is widely dis-tributed in Thailand and Laos. It is classified in the genus Dendrobium, which is used in both traditional Chinese medicine and Ayurvedic medicine for health enhancement and anti-aging. The purpose of this study was to investigate the phytochemical constituents and bioefficacy of stems, leaves and flowers from D. sulcatum for cosmetic and cosmeceutical applications. Phenolic and flavonoid contents were tested for the phytochemical evaluation. The antioxidant (DPPH, FRAP and ABTS assays), anti-lipid peroxidation, antiglycation, anti-inflammatory and anti-tyrosinase properties were assessed for their bioefficacy. The results showed that the extracts of stem and leaf had higher total phenolic content than that of the flower, and the leaf extract had the highest flavonoid content. The antioxidant, anti-lipid peroxidation and anti-inflammatory activities of the extracts were greater in those from the stem and leaf compared with that of the flower. The leaf extract exhibited the greatest antiglycation property. The results of anti-tyrosinase analysis of the extracts showed that the leaf and flower exhibited potent activities with a percentage inhibition greater than 70% (at a concentration of 50 µg/mL). In conclusion, these findings suggest that the ethanolic extracts from different parts of D. sulcatum are promising sources of natural active ingredients for further cosmetic and cosmeceutical products.
Collapse
|
3
|
Phelps DW, Fletcher AA, Rodriguez-Nunez I, Balik-Meisner MR, Tokarz DA, Reif DM, Germolec DR, Yoder JA. In vivo assessment of respiratory burst inhibition by xenobiotic exposure using larval zebrafish. J Immunotoxicol 2021; 17:94-104. [PMID: 32407153 DOI: 10.1080/1547691x.2020.1748772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.
Collapse
Affiliation(s)
- Drake W Phelps
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Ashley A Fletcher
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ivan Rodriguez-Nunez
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Debra A Tokarz
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - David M Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Dori R Germolec
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Jouda JB, Njoya EM, Fobofou SAT, Zhou ZY, Qiang Z, Mbazoa CD, Brandt W, Zhang GL, Wandji J, Wang F. Natural Polyketides Isolated from the Endophytic Fungus Phomopsis sp. CAM212 with a Semisynthetic Derivative Downregulating the ERK/IκBα Signaling Pathways. PLANTA MEDICA 2020; 86:1032-1042. [PMID: 32757200 DOI: 10.1055/a-1212-2930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Three previously undescribed natural products, phomopsinin A - C (1: - 3: ), together with three known compounds, namely, cis-hydroxymellein (4: ), phomoxanthone A (5: ) and cytochalasin L-696,474 (6: ), were isolated from the solid culture of Phomopsis sp. CAM212, an endophytic fungus obtained from Garcinia xanthochymus. Their structures were determined on the basis of spectroscopic data, including IR, NMR, and MS. The absolute configurations of 1: and 2: were assigned by comparing their experimental and calculated ECD spectra. Acetylation of compound 1: yielded 1A: , a new natural product derivative that was tested together with other isolated compounds on lipopolysaccharide-stimulated RAW 264.7 cells. Cytochalasin L-696,474 (6: ) was found to significantly inhibit nitric oxide production, but was highly cytotoxic to the treated cells, whereas compound 1: slightly inhibited nitric oxide production, which was not significantly different compared to lipopolysaccharide-treated cells. Remarkably, the acetylated derivative of 1: , compound 1A: , significantly inhibited nitric oxide production with an IC50 value of 14.8 µM and no cytotoxic effect on treated cells, thereby showing the importance of the acetyl group in the anti-inflammatory activity of 1A: . The study of the mechanism of action revealed that 1A: decreases the expression of inducible nitric oxide synthase, cyclooxygenase 2, and proinflammatory cytokine IL-6 without an effect on IL-1β expression. Moreover, it was found that 1A: exerts its anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 macrophage cells by downregulating the activation of ERK1/2 and by preventing the translocation of nuclear factor κB. Thus, derivatives of phomopsinin A (1: ), such as compound 1A: , could provide new anti-inflammatory leads.
Collapse
Affiliation(s)
- Jean-Bosco Jouda
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
| | - Emmanuel Mfotie Njoya
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Serge Alain Tanemossu Fobofou
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Zong Yuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhe Qiang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Céline Djama Mbazoa
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Guo-Lin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jean Wandji
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
5
|
Li QS, Li Y, Deora GS, Ruan BF. Derivatives and Analogues of Resveratrol: Recent Advances in Structural Modification. Mini Rev Med Chem 2019; 19:809-825. [DOI: 10.2174/1389557519666190128093840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/05/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
Resveratrol is a non-flavonoid polyphenol containing a terpenoid backbone. It has been intensively studied because of its various promising biological properties, such as anticancer, antioxidant, antibacterial, neuroprotective and anti-inflammatory activities. However, the medicinal application of resveratrol is constrained by its poor bioavailability and stability. In the past decade, more attention has been focused on making resveratrol derivatives to improve its pharmacological activities and pharmacokinetics. This review covers the literature published over the past 15 years on synthetic analogues of resveratrol. The emphasis is on the chemistry of new compounds and relevant biological activities along with structure-activity relationship. This review aims to provide a scientific and reliable basis for the development of resveratrol-based clinical drugs.
Collapse
Affiliation(s)
- Qing-Shan Li
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yao Li
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ban-Feng Ruan
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|