1
|
Wang Z, Wang H, Bai J, Cai S, Qu D, Xie Y, Wu Y. The Staphylococcus aureus ArlS Kinase Inhibitor Tilmicosin Has Potent Anti-Biofilm Activity in Both Static and Flow Conditions. Microorganisms 2024; 12:256. [PMID: 38399660 PMCID: PMC10891534 DOI: 10.3390/microorganisms12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Staphylococcus aureus can form biofilms on biotic surfaces or implanted materials, leading to biofilm-associated diseases in humans and animals that are refractory to conventional antibiotic treatment. Recent studies indicate that the unique ArlRS regulatory system in S. aureus is a promising target for screening inhibitors that may eradicate formed biofilms, retard virulence and break antimicrobial resistance. In this study, by screening in the library of FDA-approved drugs, tilmicosin was found to inhibit ArlS histidine kinase activity (IC50 = 1.09 μM). By constructing a promoter-fluorescence reporter system, we found that tilmicosin at a concentration of 0.75 μM or 1.5 μM displayed strong inhibition on the expression of the ArlRS regulon genes spx and mgrA in the S. aureus USA300 strain. Microplate assay and confocal laser scanning microscopy showed that tilmicosin at a sub-minimal inhibitory concentration (MIC) had a potent inhibitory effect on biofilms formed by multiple S. aureus strains and a strong biofilm-forming strain of S. epidermidis. In addition, tilmicosin at three-fold of MIC disrupted USA300 mature biofilms and had a strong bactericidal effect on embedded bacteria. Furthermore, in a BioFlux flow biofilm assay, tilmicosin showed potent anti-biofilm activity and synergized with oxacillin against USA300.
Collapse
Affiliation(s)
| | | | | | | | | | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| |
Collapse
|
2
|
Carrasco K, Montersino C, Derviaux C, Saez-Ayala M, Hoffer L, Restouin A, Castellano R, Casassa J, Roche P, Pasquier E, Combes S, Morelli X, Collette Y, Betzi S. CRCM5484: A BET-BDII Selective Compound with Differential Anti-leukemic Drug Modulation. J Med Chem 2022; 65:5660-5674. [PMID: 35348328 DOI: 10.1021/acs.jmedchem.1c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differentially screening the Fr-PPIChem chemical library on the bromodomain and extra-terminal (BET) BRD4-BDII versus -BDI bromodomains led to the discovery of a BDII-selective tetrahydropyridothienopyrimidinone (THPTP)-based compound. Structure-activity relationship (SAR) and hit-to-lead approaches allowed us to develop CRCM5484, a potent inhibitor of BET proteins with a preferential and 475-fold selectivity for the second bromodomain of the BRD3 protein (BRD3-BDII) over its first bromodomain (BRD3-BDI). Its very low activity was demonstrated in various cell-based assays, corresponding with recent data describing other selective BDII compounds. However, screening on a drug sensitivity and resistance-profiling platform revealed its ability to modulate the anti-leukemic activity in combination with various FDA-approved and/or in-development drugs in a cell- and context-dependent differential manner. Altogether, the results confirm the originality of the THPTP molecular mode of action in the bromodomain (BD) cavity and its potential as a starting scaffold for the development of potent and selective bromodomain inhibitors.
Collapse
Affiliation(s)
- Kendall Carrasco
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France
| | - Camille Montersino
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France.,Institut Paoli-Calmettes, Plateforms HiTS & TrGET, Marseille 13009, France
| | - Carine Derviaux
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France.,Institut Paoli-Calmettes, Plateforms HiTS & TrGET, Marseille 13009, France
| | - Magali Saez-Ayala
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France
| | - Laurent Hoffer
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France
| | - Audrey Restouin
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France.,Institut Paoli-Calmettes, Plateforms HiTS & TrGET, Marseille 13009, France
| | - Rémy Castellano
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France.,Institut Paoli-Calmettes, Plateforms HiTS & TrGET, Marseille 13009, France
| | - Justine Casassa
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France
| | - Philippe Roche
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France
| | - Eddy Pasquier
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France
| | - Sébastien Combes
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France
| | - Xavier Morelli
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France.,Institut Paoli-Calmettes, Plateforms HiTS & TrGET, Marseille 13009, France
| | - Yves Collette
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France.,Institut Paoli-Calmettes, Plateforms HiTS & TrGET, Marseille 13009, France
| | - Stéphane Betzi
- CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille 13009, France
| |
Collapse
|
4
|
Antony Savarimuthu S, Leo Prakash DG, Augustine Thomas S, Gandhi T, Bera MK. Highly Z-selective synthesis of 1,3-oxathiol-2-ylidenes and 4-methylene-oxazolidine-2-thiones via atom-specific 5-exo-dig cyclization of propargyl alcohol with isothiocyanate. Org Biomol Chem 2020; 18:3552-3562. [PMID: 32342068 DOI: 10.1039/d0ob00083c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DBU mediated 5-exo-dig cyclization of isothiocyanate and propargyl alcohol leading to valuable heterocyclic compounds has been accomplished. The different modes of nucleophilicity (either S-selective or N-selective) of isothiocyanates were found to depend on the substitution pattern of propargyl alcohol. The terminal propargyl alcohol and isothiocyanate underwent an N-nucleophilic attack to afford 3-substituted 4-methylene oxazolidine-2-thiones. In contrast, exclusive S-nucleophilic cyclization was observed with internal propargyl alcohol to produce (Z)-1,3-oxathiol-2-ylidenes and (Z)-N-(Z)-4-ethylidene-1,3-oxathiolan-2-ylidenes from secondary and primary propargyl alcohols, respectively. The formation of high Z-selectivity in the imine motif and alkene is the highlight of this new method as multiple selectivities over C[double bond, length as m-dash]N and C[double bond, length as m-dash]C in a single system are synthetically highly challenging. The Z-selectivity in imine and alkene may be attributed to electronic and steric factors respectively.
Collapse
Affiliation(s)
- S Antony Savarimuthu
- Department of Chemistry, St. Xavier's College (Autonomous), Palayamkottai, Tamil Nadu-627 002, India
| | | | | | | | | |
Collapse
|
6
|
Tugcu FT, Turhan K, Karadayi M, Gulluce M. Genotoxic evaluation of newly synthesized iminothiazolidinones. Toxicol Ind Health 2017; 33:811-820. [PMID: 29050532 DOI: 10.1177/0748233717730492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The current study was designed to assess the potential toxicological effects of newly synthesized iminothiazolidinones by employing Ames Salmonella, Escherichia coli WP2, Zea mays seed germination, and random amplified polymorphic DNA (RAPD) assay systems. The bacterial tester strains S. typhimurium TA1535, TA1537, TA1538, TA98, TA100, and E. coli WP2 uvrA were chosen to test the direct gene mutation inducing capabilities of the test materials in prokaryotic systems and Z. mays seeds for determination of potential toxicological effects in eukaryotic systems. OPA-3 and OPA-6 primers were used in the RAPD analysis to determine genotoxic activities on the eukaryotic genomes. According to the results, none of the test materials showed significant mutagenic activity on the bacterial tester strains at the chosen concentrations. Additionally, none of the tested compounds showed inhibition of the germination of Z. mays seeds. In contrast, the RAPD analysis results were inconsistent with the bacterial reversion assays and the seed germination assay results. All test materials significantly changed the RAPD profiles for OPA-3; however, only compound 5 showed a significant change for OPA-6 when compared with the control groups. In conclusion, the newly synthesized iminothiazolidinone derivatives (C1-C5) were determined as potentially genotoxic compounds and they should be checked with multiple toxicology test systems before further studies to determine their actual use.
Collapse
Affiliation(s)
- Fatma Tulay Tugcu
- 1 Department of Chemistry, Faculty of Science and Art, Yildiz Technical University, Istanbul, Turkey
| | - Kadir Turhan
- 1 Department of Chemistry, Faculty of Science and Art, Yildiz Technical University, Istanbul, Turkey
| | - Mehmet Karadayi
- 2 Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Medine Gulluce
- 2 Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|