1
|
Mottaghi Amlashi D, Mobini S, Shahedi M, Habibi Z, Bavandi H, Yousefi M. Biocatalytic synthesis of oxa(thia)diazole aryl thioethers. Sci Rep 2024; 14:19468. [PMID: 39174618 PMCID: PMC11341560 DOI: 10.1038/s41598-024-70239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
A novel approach for the synthesis of 1,3,4-oxa(thia)diazole aryl thioethers through a biocatalytic strategy has been introduced. By leveraging Myceliophthora thermophila laccase (Novozym 51003) as a catalyst, catechol undergoes oxidation to ortho-quinone, facilitating subsequent 1,4-thia-Michael addition reactions. The method offers efficiency and mild reaction conditions, demonstrating promise for sustainable synthesis pathways in organic chemistry. Using this approach, 13 new derivatives of 2,5-disubstituted-1,3,4-oxa(thia)diazole aryl thioethers, with a yield of 46-94%, were synthesized.
Collapse
Affiliation(s)
- Donya Mottaghi Amlashi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Sepideh Mobini
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Mansour Shahedi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Zohreh Habibi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran.
| | - Hossein Bavandi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Maryam Yousefi
- Avicenna Research Institute, Nanobiotechnology Research Center, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Khamitova А, Berillo D, Lozynskyi A, Konechnyi Y, Mural D, Georgiyants V, Lesyk R. Thiadiazole and Thiazole Derivatives as Potential Antimicrobial Agents. Mini Rev Med Chem 2024; 24:531-545. [PMID: 37448365 DOI: 10.2174/1389557523666230713115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND This review summarizes data on heterocyclic systems with thiadiazole and thiazole fragments in molecules as promising antimicrobial agents. INTRODUCTION Thiadiazole and thiazole backbones are the most favored and well-known heterocycles, a common and essential feature of various drugs. These scaffolds occupy a central position and are the main structural components of numerous drugs with a wide spectrum of action. These include antimicrobial, antituberculous, anti-inflammatory, analgesic, antiepileptic, antiviral, and anticancer agents. METHOD The research is based on bibliosemantic and analytical methods using bibliographic and abstract databases, as well as databases of chemical compounds. RESULT This review reports on thiadiazole and thiazole derivatives, which have important pharmacological properties. We are reviewing the structural modifications of various thiadiazole and thiazole derivatives, more specifically, the antimicrobial activity reported over the last years, as we have taken this as our main research area. 80 compounds were illustrated, and various derivatives containing hydrazone bridged thiazole and pyrrole rings, 2-pyridine and 4-pyridine substituted thiazole derivatives, compounds containing di-, tri- and tetrathiazole moieties, spiro-substituted 4- thiazolidinone-imidazoline-pyridines were analyzed. Derivatives of 5-heteroarylidene-2,4- thiazolidinediones, fluoroquinolone-thiadiazole hybrids, and others. CONCLUSION 1,3,4-thiadiazoles and thiazoles are valuable resource for researchers engaged in rational drug design and development in this area.
Collapse
Affiliation(s)
- Аkzhonas Khamitova
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, NJSC «Asfendiyarov Kazakh National Medical University», 94 Tole Bi, Almaty, 050000, Kazakhstan
| | - Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, NJSC «Asfendiyarov Kazakh National Medical University», 94 Tole Bi, Almaty, 050000, Kazakhstan
- Department of Chemistry and Biochemical Engineering, Institute of Chemical and Biological Technologies (IHBT), Satbayev University 22 Satbaev, Almaty, 050013, Kazakhstan
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
| | - Yulian Konechnyi
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
| | - Dmytro Mural
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4 Valentynivska, Kharkiv, 61168, Ukraine
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4 Valentynivska, Kharkiv, 61168, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
- Department of Biotechnology and Cell Biology, University of Information Technology and Management in Rzeszow, 2 Sucharskiego, Rzeszow, 35-225, Poland
| |
Collapse
|
3
|
Men Y, Li Z, Wang H, Liu Y, Liu X, Chen B. Synthesis and antiproliferative evaluation of novel 1,3,4-thiadiazole-S-alkyl derivatives based on quinazolinone. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2176500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Yanle Men
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Zijian Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Hongying Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Yuming Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Baoquan Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
4
|
Comparative Study of the Synthetic Approaches and Biological Activities of the Bioisosteres of 1,3,4-Oxadiazoles and 1,3,4-Thiadiazoles over the Past Decade. Molecules 2022; 27:molecules27092709. [PMID: 35566059 PMCID: PMC9102899 DOI: 10.3390/molecules27092709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles are well-known pharmacophores for many medicinally important drugs. Throughout the past 10 years, 1,3,4-oxa-/thiadiazole nuclei have been very attractive to researchers for drug design, synthesis, and the study of their potential activity towards a variety of diseases, including microbial and viral infections, cancer, diabetes, pain, and inflammation. This work is an up-to-date comparative study that identifies the differences between 1,3,4-thiadiazoles and 1,3,4-oxadiazoles concerning their methods of synthesis from different classes of starting compounds under various reaction conditions, as well as their biological activities and structure–activity relationship.
Collapse
|
5
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
6
|
Celik I, Ayhan-Kilcigil G, Guven B, Kara Z, Onay-Besikci A. In Vitro and in Silico Evaluation of Some New 1H-Benzimidazoles Bearing Thiosemicarbazide and Triazole as Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2015404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Gulgun Ayhan-Kilcigil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Berna Guven
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zumra Kara
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Arzu Onay-Besikci
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Synthesis, antiproliferative, and antimicrobial properties of novel phthalimide derivatives. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Singh K, Pal R, Khan SA, Kumar B, Akhtar MJ. Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Synthesis, Characterization, and Antioxidant and Anticancer Activity of 1,4-Disubstituted 1,2,3-triazoles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Jiao J, Chen M, Sun S, Si W, Wang X, Ding W, Fu X, Wang A, Yang C. Synthesis, Bioactivity Evaluation,
3D‐QSAR
, and Molecular Docking of Novel Pyrazole‐4‐carbohydrazides as Potential Fungicides Targeting Succinate Dehydrogenase. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jian Jiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Shengxin Sun
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Weijie Si
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Weijie Ding
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Xincan Fu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - An Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| |
Collapse
|
11
|
Synthesis, X-ray structure, vibrational spectroscopy, DFT, biological evaluation and molecular docking studies of (E)-N’-(4-(dimethylamino)benzylidene)-5-methyl-1H-pyrazole-3-carbohydrazide. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128541] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Liu XJ, Liu HY, Wang HX, Shi YP, Tang R, Zhang S, Chen BQ. Synthesis and antitumor evaluation of novel fused heterocyclic 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02409-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Li S, Wang HX, Liu HY, Jing F, Fu XY, Li CW, Shi YP, Chen BQ. Synthesis and biological evaluation of novel disulfides incorporating 1,3,4-thiadiazole scaffold as promising antitumor agents. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Synthesis and bioassay of a new class of disubstituted 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02360-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Turan N, Özkay ÜD, Can NÖ, Can ÖD. Investigating the Antidepressant-like Effects of some Benzimidazolepiperidine Derivatives by In-Vivo Experimental Methods. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666181004103112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background: Benzimidazole and piperidine rings are important pharmacophore groups
for drug design studies.
</P><P>
Objective: In this study, we aimed to investigate the antidepressant-like activity of some 2-(4-
substituted-phenyl)-1-[2-(piperidin-1-yl)ethyl]-1H-benzimidazole derivatives.
</P><P>
Methods: Tail-suspension Test (TST) and Modified Forced Swimming Tests (MFST) were used to
assess antidepressant-like activities of the test compounds. Moreover, locomotor activity performances
of the animals were evaluated by an activity cage device.
</P><P>
Results: In the TST and MFST, compounds 2c-2h (10 mg/kg) and the reference drug fluoxetine (20
mg/kg) significantly reduced the immobility time of mice indicating the antidepressant-like activities
of these compounds. Further, in MFST, the same compounds induced significant enhancement
in the duration of active swimming behaviors without affecting the climbing performance of the
animals. This prolongation in the swimming time, similar to fluoxetine, pointed out that antidepressant-
like activity of the compounds 2c-2h might be related to the serotonergic rather than noradrenergic
mechanisms. Besides, results of the activity cage tests demonstrated that none of the tested
compounds caused an alteration in the locomotor activities of mice, signifying that antidepressantlike
effects presented in this study were specific.
</P><P>
Conclusion: In conclusion, results of this present study supported the previous papers reporting the
therapeutic potential of compounds carrying benzimidazole and/or piperidine rings in their structure
and emphasized, once again, the importance of these pharmacophore groups in drug design studies.
Collapse
Affiliation(s)
- Nazlı Turan
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Nafiz Öncü Can
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
16
|
Bakthavatchala Reddy N, Zyryanov GV, Mallikarjuna Reddy G, Balakrishna A, Padmaja A, Padmavathi V, Suresh Reddy C, Garcia JR, Sravya G. Design and Synthesis of Some New Benzimidazole Containing Pyrazoles and Pyrazolyl Thiazoles as Potential Antimicrobial Agents. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Grigory V. Zyryanov
- Chemical Engineering Institute; Ural Federal University; Yekaterinburg 620002 Russia
- Ural Division of the Russian Academy of Sciences; I. Ya. Postovskiy Institute of Organic Synthesis; 22 S. Kovalevskoy Street Yekaterinburg 620219 Russia
| | - Guda Mallikarjuna Reddy
- Chemical Engineering Institute; Ural Federal University; Yekaterinburg 620002 Russia
- Department of Chemistry; State University of Ponta Grossa; Ponta Grossa 84030-900 Parana Brazil
| | - Avula Balakrishna
- Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous); Nandyal 518501 Andhra Pradesh India
| | - Adivireddy Padmaja
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | | | - Cirandur Suresh Reddy
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - Jarem Raul Garcia
- Department of Chemistry; State University of Ponta Grossa; Ponta Grossa 84030-900 Parana Brazil
| | - Gundala Sravya
- Chemical Engineering Institute; Ural Federal University; Yekaterinburg 620002 Russia
| |
Collapse
|
17
|
Tokgöz G, Demir Özkay Ü, Osmaniye D, Turan Yücel N, Can ÖD, Kaplancıklı ZA. Synthesis of Novel Benzazole Derivatives and Evaluation of Their Antidepressant-Like Activities with Possible Underlying Mechanisms. Molecules 2018; 23:molecules23112881. [PMID: 30400609 PMCID: PMC6278502 DOI: 10.3390/molecules23112881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/09/2023] Open
Abstract
Novel benzazole derivative compounds 4a–4h were obtained by the reaction of corresponding 2-(benzazol-2-ylthio)acetohydrazide and appropriate 4-substituted benzaldehydes. The chemical structures of the synthesized compounds were elucidated by FT-IR, 1H-NMR, 13C-NMR and LCMS spectroscopic methods. Antidepressant-like effects of the compounds were evaluated by tail suspension test (TST) and modified forced swimming tests (MFST). Moreover, locomotor activities of the animals were assessed by an activity cage apparatus. In the series, compounds 4a, 4b, 4e and 4f (at 50 mg/kg) significantly decreased the immobility time of mice in both of the TST and MFST. The same compounds prolonged the swimming time of animals in MFST without any change in the climbing duration. These data indicated that compounds 4a, 4b, 4e and 4f possess significant antidepressant-like activities. Moreover, pre-treatments with p-chloro-phenylalanine methyl ester (an inhibitor of serotonin synthesis), NAN-190 (a 5-HT1A antagonist), ketanserin (a 5-HT2A/2C antagonist), and ondansetron (a 5-HT3 antagonist) reversed the exhibited pharmacological effects. Results of the mechanistic studies suggested the involvement of serotonergic system and contributions of 5-HT1A, 5-HT2A/2C and 5-HT3 receptors to the antidepressant-like effects of compounds 4a, 4b, 4e and 4f. Furthermore, unchanged locomotor activity of mice following the administrations of these four derivatives confirmed that the presented antidepressant-like effects are specific.
Collapse
Affiliation(s)
- Gamze Tokgöz
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Nazlı Turan Yücel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| |
Collapse
|
18
|
Simulation results source for the identification of biological active compounds: synthesis, antimicrobial evaluation and SARs of three in one heterocyclic motifs. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Liu HY, Wang HX, Li X, Wu Z, Li CW, Liu YM, Li W, Chen BQ. Synthesis, antitumor and antimicrobial evaluation of novel 1,3,4-thiadiazole derivatives bearing disulfide bond. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2204-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Tantray MA, Khan I, Hamid H, Alam MS, Dhulap A, Kalam A. Synthesis of benzimidazole-linked-1,3,4-oxadiazole carboxamides as GSK-3β inhibitors with in vivo antidepressant activity. Bioorg Chem 2018; 77:393-401. [PMID: 29421716 DOI: 10.1016/j.bioorg.2018.01.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022]
Abstract
Recent findings of potential implications of glycogen synthase kinase-3β (GSK-3β) dysfunction in psychiatric disorders like depression, have increased focus for development of GSK-3β inhibitors with possible anti-depressant activity. Keeping this in view, we synthesized a series of benzimidazole-linked-1,3,4-oxadiazole carboxamides and evaluated them for in vitro GSK-3β inhibition. Active compounds were investigated for in vivo antidepressant activity in Wistar rats. Docking studies of active compounds have also been performed. Among nineteen compounds synthesized, compounds 7a, 7r, 7j, and 7d exhibited significant potency against GSK-3β in sub-micromolar range with IC50 values of 0.13 μM, 0.14 μM, 0.20 μM, 0.22 μM respectively and significantly reduced immobility time (antidepressant-like activity) in rats compared to control group. Docking study showed key interactions of these compounds with GSK-3β. These compounds may thus serve as valuable candidates for subsequent development of effective drugs against depression and related disorders.
Collapse
Affiliation(s)
- Mushtaq A Tantray
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Imran Khan
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Hinna Hamid
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| | - Mohammad Sarwar Alam
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Abhijeet Dhulap
- CSIR - Unit for Research and Development of Information Products (URDIP), Pune 411038, India
| | - Abul Kalam
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| |
Collapse
|
21
|
Sharma P, Reddy TS, Kumar NP, Senwar KR, Bhargava SK, Shankaraiah N. Conventional and microwave-assisted synthesis of new 1 H -benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold. Eur J Med Chem 2017; 138:234-245. [DOI: 10.1016/j.ejmech.2017.06.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/25/2022]
|
22
|
Akhtar W, Khan MF, Verma G, Shaquiquzzaman M, Rizvi MA, Mehdi SH, Akhter M, Alam MM. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur J Med Chem 2016; 126:705-753. [PMID: 27951484 DOI: 10.1016/j.ejmech.2016.12.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Accepted: 12/03/2016] [Indexed: 12/21/2022]
Abstract
Benzimidazole, a fused heterocycle bearing benzene and imidazole has gained considerable attention in the field of contemporary medicinal chemistry. The moiety is of substantial importance because of its wide array of pharmacological activities. This nitrogen containing heterocycle is a part of a number of therapeutically used agents. Moreover, a number of patents concerning this moiety in the last few years further highlight its worth. The present review covers the recent work published by scientists across the globe during last five years.
Collapse
Affiliation(s)
- Wasim Akhtar
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Mohemmed Faraz Khan
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Garima Verma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M A Rizvi
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Hassan Mehdi
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|