1
|
Zhang Z, Wei W, Chen S, Yang J, Song D, Chen Y, Zhao Z, Chen J, Wang F, Wang J, Li Z, Liang Y, Yu H. Chemoenzymatic Installation of Site-Specific Chemical Groups on DNA Enhances the Catalytic Activity. J Am Chem Soc 2024; 146:7052-7062. [PMID: 38427585 DOI: 10.1021/jacs.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Functional DNAs are valuable molecular tools in chemical biology and analytical chemistry but suffer from low activities due to their limited chemical functionalities. Here, we present a chemoenzymatic method for site-specific installation of diverse functional groups on DNA, and showcase the application of this method to enhance the catalytic activity of a DNA catalyst. Through chemoenzymatic introduction of distinct chemical groups, such as hydroxyl, carboxyl, and benzyl, at specific positions, we achieve significant enhancements in the catalytic activity of the RNA-cleaving deoxyribozyme 10-23. A single carboxyl modification results in a 100-fold increase, while dual modifications (carboxyl and benzyl) yield an approximately 700-fold increase in activity when an RNA cleavage reaction is catalyzed on a DNA-RNA chimeric substrate. The resulting dually modified DNA catalyst, CaBn, exhibits a kobs of 3.76 min-1 in the presence of 1 mM Mg2+ and can be employed for fluorescent imaging of intracellular magnesium ions. Molecular dynamics simulations reveal the superior capability of CaBn to recruit magnesium ions to metal-ion-binding site 2 and adopt a catalytically competent conformation. Our work provides a broadly accessible strategy for DNA functionalization with diverse chemical modifications, and CaBn offers a highly active DNA catalyst with immense potential in chemistry and biotechnology.
Collapse
Affiliation(s)
- Ze Zhang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Siqi Chen
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jintao Yang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinghan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zerun Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jiawen Chen
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Fulong Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jiahuan Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Zhe Li
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Larcher LM, Pitout IL, Keegan NP, Veedu RN, Fletcher S. DNAzymes: Expanding the Potential of Nucleic Acid Therapeutics. Nucleic Acid Ther 2023. [PMID: 37093127 DOI: 10.1089/nat.2022.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Nucleic acids drugs have been proven in the clinic as a powerful modality to treat inherited and acquired diseases. However, key challenges including drug stability, renal clearance, cellular uptake, and movement across biological barriers (foremost the blood-brain barrier) limit the translation and clinical efficacy of nucleic acid-based therapies, both systemically and in the central nervous system. In this study we provide an overview of an emerging class of nucleic acid therapeutic, called DNAzymes. In particular, we review the use of chemical modifications and carrier molecules for the stabilization and/or delivery of DNAzymes in cell and animal models. Although this review focuses on DNAzymes, the strategies described are broadly applicable to most nucleic acid technologies. This review should serve as a general guide for selecting chemical modifications to improve the therapeutic performance of DNAzymes.
Collapse
Affiliation(s)
- Leon M Larcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Ianthe L Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Niall P Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Discovery, PYC Therapeutics, Nedlands, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Discovery, PYC Therapeutics, Nedlands, Australia
| |
Collapse
|
3
|
Debiais M, Lelievre A, Vasseur J, Müller S, Smietana M. Boronic Acid-Mediated Activity Control of Split 10-23 DNAzymes. Chemistry 2021; 27:1138-1144. [PMID: 33058268 PMCID: PMC7839725 DOI: 10.1002/chem.202004227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/11/2022]
Abstract
The 10-23 DNAzyme is an artificially developed Mg2+ -dependent catalytic oligonucleotide that can cleave an RNA substrate in a sequence-specific fashion. In this study, new split 10-23 DNAzymes made of two nonfunctional fragments, one of which carries a boronic acid group at its 5' end, while the other has a ribonucleotide at its 3' end, were designed. Herein it is demonstrated that the addition of Mg2+ ions leads to assembly of the fragments, which in turn induces the formation of a new boronate internucleoside linkage that restores the DNAzyme activity. A systematic evaluation identified the best-performing system. The results highlight key features for efficient control of DNAzyme activity through the formation of boronate linkages.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRSENSCMPlace Eugène Bataillon34095MontpellierFrance
| | - Amandine Lelievre
- University GreifswaldInstitute for BiochemistryFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Jean‐Jacques Vasseur
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRSENSCMPlace Eugène Bataillon34095MontpellierFrance
| | - Sabine Müller
- University GreifswaldInstitute for BiochemistryFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Michael Smietana
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRSENSCMPlace Eugène Bataillon34095MontpellierFrance
| |
Collapse
|
4
|
Characterization of a DNA-hydrolyzing DNAzyme for generation of PCR strands of unequal length. Biochimie 2020; 179:181-189. [PMID: 33022314 DOI: 10.1016/j.biochi.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 11/21/2022]
Abstract
I-R3 DNAzyme is a small, highly active catalytic DNA for DNA hydrolysis. In here, we designed two cis-structure DNAzymes (I-R3N and I-R3S) based on the different locates of the joint linker between I-R3 and its substrate. Data demonstrated that both DNAzymes were highly dependent on Zn2+, and worked at a narrow range around pH 7.0. They exhibited strong anti-interference with Mg2+ and Ca2+, but inhibited by Na+ and K+. Moreover, single and multiple-site mutations were generated within the catalytic core to carry out a comprehensive mutational study of I-R3 motif, in which most nucleotides were highly conserved and the nucleotides A5, T11 and T8 were identified as the mutational hotspots. Furthermore, an efficient variant A5G was obtained and its reaction condition was optimized. Finally, we constructed A5G to the 3' end of a single-stranded DNA (ssDNA) and applied it for asymmetrical PCR amplification to produce a single and double-stranded DNA mixture, in which A5G within ssDNA can self-cleave to generate a shorter desired ssDNA by denaturing gel separation. This would provide a new non-chemical modification approach for preparation of the expected ssDNA for in vitro selection of DNAzymes.
Collapse
|
5
|
Rosenbach H, Victor J, Etzkorn M, Steger G, Riesner D, Span I. Molecular Features and Metal Ions That Influence 10-23 DNAzyme Activity. Molecules 2020; 25:E3100. [PMID: 32646019 PMCID: PMC7412337 DOI: 10.3390/molecules25133100] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
Deoxyribozymes (DNAzymes) with RNA hydrolysis activity have a tremendous potential as gene suppression agents for therapeutic applications. The most extensively studied representative is the 10-23 DNAzyme consisting of a catalytic loop and two substrate binding arms that can be designed to bind and cleave the RNA sequence of interest. The RNA substrate is cleaved between central purine and pyrimidine nucleotides. The activity of this DNAzyme in vitro is considerably higher than in vivo, which was suggested to be related to its divalent cation dependency. Understanding the mechanism of DNAzyme catalysis is hindered by the absence of structural information. Numerous biological studies, however, provide comprehensive insights into the role of particular deoxynucleotides and functional groups in DNAzymes. Here we provide an overview of the thermodynamic properties, the impact of nucleobase modifications within the catalytic loop, and the role of different metal ions in catalysis. We point out features that will be helpful in developing novel strategies for structure determination and to understand the mechanism of the 10-23 DNAzyme. Consideration of these features will enable to develop improved strategies for structure determination and to understand the mechanism of the 10-23 DNAzyme. These insights provide the basis for improving activity in cells and pave the way for developing DNAzyme applications.
Collapse
Affiliation(s)
- Hannah Rosenbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| | - Detlev Riesner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| |
Collapse
|
6
|
Du S, Li Y, Chai Z, Shi W, He J. Site-specific functionalization with amino, guanidinium, and imidazolyl groups enabling the activation of 10–23 DNAzyme. RSC Adv 2020; 10:19067-19075. [PMID: 35518333 PMCID: PMC9053948 DOI: 10.1039/d0ra02226h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022] Open
Abstract
10–23 DNAzyme has been extensively explored as a therapeutic and biotechnological tool, as well as in DNA computing. Faster cleavage or transformation is always needed. The present research displays a rational modification approach for a more efficient DNAzyme. In the catalytic core, amino, guanidinium and imidazolyl groups were introduced for its chemical activation through the adenine base. Among the six adenine residues, A9 is the unique residue that realizes all the positive effects; the 6-amino and 8-position of adenine and the 7-position of 8-aza-7-deaza-adenine could be used for the introduction of the functional groups. A12 is a new choice for catalytic improvement with an 8-substituent. Therefore, more active DNAzymes could be expected by this nucleobase-modified activation approach. Chemical activation of 10–23 DNAzyme was realized at A9 modified with active functional groups amino, guanidinium, and imidazolyl groups.![]()
Collapse
Affiliation(s)
- Shanshan Du
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
- China
| | - Yang Li
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
- China
| | - Zhilong Chai
- School of Pharmaceutical Sciences
- Guizhou University
- China
| | - Weiguo Shi
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
- China
| | - Junlin He
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
- China
| |
Collapse
|
7
|
Du S, Li Y, Chai Z, Shi W, He J. Functionalization of 8-17 DNAzymes modulates catalytic efficiency and divalent metal ion preference. Bioorg Chem 2019; 94:103401. [PMID: 31711763 DOI: 10.1016/j.bioorg.2019.103401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022]
Abstract
8-17 and 17E DNAzyme are being explored as biosensors for metal ions and RNA motifs of interest, more sensitive and efficient DNAzymes are required to meet the practical applications. Their similarity in the catalytic cores and differences in catalytic efficiency and metal ion dependence initiated great interest about the contribution of the catalytic residues. Functionalization of four adenine residues in the catalytic cores of 8-17 DNAzyme and 17E was conducted with amino, guanidinium, and imidazolyl groups. In the bulge loops of 8-17 and 17E, N6-(3-aminopropyl)-2'-deoxyadenosine (residue 1) at A15 led to new DNAzymes 8-17DZ-A15-1 and 17E-A15-1, with much more efficient cleavage ability in the Ca2+-mediated reaction and the greater preference for Ca2+ over Mg2+ than 8-17 DNAzyme and 17E, respectively, especially with a concentration-dependent increase of the selectivity, which is different from most DNAzymes with the similar dependence on both Mg2+ and Ca2+. With this kind of post-selection modification on 8-17 DNAzymes, for the first time, the catalytic efficiency and metal ion selectivity could be positively modulated. It is also helpful for the catalyic mechanistic studies of these DNAzymes, especially, the role of the unconserved A15 should be emphasized.
Collapse
Affiliation(s)
- Shanshan Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhilong Chai
- School of Pharmaceutical Sciences, Guizhou University, Guizhou 550025, China
| | - Weiguo Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Junlin He
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
8
|
Li Z, Zhu J, He J. Conformational studies of 10-23 DNAzyme in solution through pyrenyl-labeled 2'-deoxyadenosine derivatives. Org Biomol Chem 2018; 14:9846-9858. [PMID: 27714317 DOI: 10.1039/c6ob01702a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
10-23 DNAzyme is a small catalytic DNA molecule. Studies on its conformation in solution are critical for understanding its catalytic mechanism and functional optimization. Based on our previous research, two fluorescent nucleoside analogues 1 and 2 were designed for the introduction of a pyrenyl group at one of the five dA residues in the catalytic core and the unpaired adenosine residue in its full-DNA substrate, respectively. Ten pyrenyl-pyrenyl pairs are formed in the DNAzyme-substrate complexes in solution for sensing the spacial positions of the five dA residues relative to the cleavage site using fluorescence spectra. The position-dependent quenching effect of pyrene emission fluorescence by nucleobases, especially the pyrenyl-pyrenyl interaction, was observed for some positions. The adenine residues in the 3'-part of the catalytic loop seem to be closer to the cleavage site than the adenine residues in the 5'-part, which is consistent with the molecular dynamics simulation result. The catalytic activities and Tm changes also confirmed the effect of the pyrenyl-nucleobase and pyrenyl-pyrenyl pair interactions. Together with functional group mutations, catalytically relevant nucleobases will be identified for understanding the catalytic mechanism of 10-23 DNAzyme.
Collapse
Affiliation(s)
- Zhiwen Li
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Junfei Zhu
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Junlin He
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
9
|
Abstract
DNAzymes are catalytically active DNA molecules that are obtained via in vitro selection. RNA-cleaving DNAzymes have attracted significant attention for both therapeutic and diagnostic applications due to their excellent programmability, stability, and activity. They can be designed to cleave a specific mRNA to down-regulate gene expression. At the same time, DNAzymes can sense a broad range of analytes. By combining these two functions, theranostic DNAzymes are obtained. This review summarizes the progress of DNAzyme for theranostic applications. First, in vitro selection of DNAzymes is briefly introduced, and some representative DNAzymes related to biological applications are summarized. Then, the applications of DNAzyme for RNA cleaving are reviewed. DNAzymes have been used to cleave RNA for treating various diseases, such as viral infection, cancer, inflammation and atherosclerosis. Several formulations have entered clinical trials. Next, the use of DNAzymes for detecting metal ions, small molecules and nucleic acids related to disease diagnosis is summarized. Finally, the theranostic applications of DNAzyme are reviewed. The challenges to be addressed include poor DNAzyme activity under biological conditions, mRNA accessibility, delivery, and quantification of gene expression. Possible solutions to overcome these challenges are discussed, and future directions of the field are speculated.
Collapse
|