1
|
Nowicki K, Krajewska J, Stępniewski TM, Wielechowska M, Wińska P, Kaczmarczyk A, Korpowska J, Selent J, Marek-Urban PH, Durka K, Woźniak K, Laudy AE, Luliński S. Exploiting thiol-functionalized benzosiloxaboroles for achieving diverse substitution patterns - synthesis, characterization and biological evaluation of promising antibacterial agents. RSC Med Chem 2024; 15:1751-1772. [PMID: 38784477 PMCID: PMC11110727 DOI: 10.1039/d4md00061g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
Benzosiloxaboroles are an emerging class of medicinal agents possessing promising antimicrobial activity. Herein, the expedient synthesis of two novel thiol-functionalized benzosiloxaboroles 1e and 2e is reported. The presence of the SH group allowed for diverse structural modifications involving the thiol-Michael addition, oxidation, as well as nucleophilic substitution giving rise to a series of 27 new benzosiloxaboroles containing various polar functional groups, e.g., carbonyl, ester, amide, imide, nitrile, sulfonyl and sulfonamide, and pendant heterocyclic rings. The activity of the obtained compounds against selected bacterial and yeast strains, including multidrug-resistant clinical strains, was investigated. Compounds 6, 12, 20 and 22-24 show high activity against Staphylococcus aureus, including both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) strains, with MIC values in the range of 1.56-12.5 μg mL-1, while their cytotoxicity is relatively low. The in vitro assay performed with 2-(phenylsulfonyl)ethylthio derivative 20 revealed that, in contrast to the majority of known antibacterial oxaboroles, the plausible mechanism of antibacterial action, involving inhibition of the leucyl-tRNA synthetase enzyme, is not responsible for the antibacterial activity. Structural bioinformatic analysis involving molecular dynamics simulations provided a possible explanation for this finding.
Collapse
Affiliation(s)
- Krzysztof Nowicki
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Joanna Krajewska
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw Banacha 1b 02-097 Warsaw Poland
| | - Tomasz M Stępniewski
- GPCR Drug Discovery Lab, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Department of Medicine and Life Sciences, Pompeu Fabra University (UPF) Carrer del Dr. Aiguader, 88 08003 Barcelona Spain
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Anna Kaczmarczyk
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Julia Korpowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Jana Selent
- GPCR Drug Discovery Lab, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Department of Medicine and Life Sciences, Pompeu Fabra University (UPF) Carrer del Dr. Aiguader, 88 08003 Barcelona Spain
| | - Paulina H Marek-Urban
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Krzysztof Woźniak
- Faculty of Chemistry, University of Warsaw Pasteura 1 00-093 Warsaw Poland
| | - Agnieszka E Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw Banacha 1b 02-097 Warsaw Poland
| | - Sergiusz Luliński
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
2
|
Das BC, Adil Shareef M, Das S, Nandwana NK, Das Y, Saito M, Weiss LM. Boron-Containing heterocycles as promising pharmacological agents. Bioorg Med Chem 2022; 63:116748. [PMID: 35453036 DOI: 10.1016/j.bmc.2022.116748] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
The incorporation of the "magic" boron atom has been established as an important new strategy in the field of medicinal chemistry as boron compounds have been shown to form various bonds with their biological targets. Currently, a number of boron-based drugs (e.g. bortezomib, crisaborole, and tavaborole) have been FDA approved and are in the clinic, and several other boron-containing compounds are in clinical trials. Boron-based heterocycles have an incredible potential in the ongoing quest for new therapeutic agents owing to their plethora of biological activities and useful pharmacokinetic profiles. The present perspective is intended to review the pharmacological applications of boron-based heterocycles that have been published. We have classified these compounds into groups exhibiting shared pharmacological activities and discussed their corresponding biological targets focusing mainly on the most potent therapeutic compounds.
Collapse
Affiliation(s)
- Bhaskar C Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA; Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mohammed Adil Shareef
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Nitesh K Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Yogarupa Das
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Louis M Weiss
- Department of Medicine, Division of Infectious Diseases and Department of Pathology Division of Parasitology and Tropical Medicine, Albert Einstein College of Medicine, Bronx NY-10461, USA
| |
Collapse
|
3
|
Dhawan B, Akhter G, Hamid H, Kesharwani P, Alam MS. Benzoxaboroles: New emerging and versatile scaffold with a plethora of pharmacological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Messner K, Vuong B, Tranmer GK. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15030264. [PMID: 35337063 PMCID: PMC8948683 DOI: 10.3390/ph15030264] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In this review, the history of boron’s early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron’s emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.
Collapse
Affiliation(s)
- Katia Messner
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Billy Vuong
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Geoffrey K. Tranmer
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence:
| |
Collapse
|
5
|
Hu J, Ji X, Su F, Zhao Q, Zhang G, Zhao M, Lai M. Synthesis, odor characteristics and biological evaluation of N-substituted pyrrolyl chalcones. Org Biomol Chem 2022; 20:8747-8755. [DOI: 10.1039/d2ob01561g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Base-mediated transition-metal free α-functionalization of N-substituted acetylpyrroles with commercial alcohols to generate various pyrrolyl chalcones is reported, and several prominent bioactive and flavor molecules were obtained.
Collapse
Affiliation(s)
- Jingyi Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Fangyao Su
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Qianrui Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Ganlin Zhang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| |
Collapse
|
6
|
Adamczyk-Woźniak A, Tarkowska M, Lazar Z, Kaczorowska E, Madura ID, Maria Dąbrowska A, Lipok J, Wieczorek D. Synthesis, structure, properties and antimicrobial activity of para trifluoromethyl phenylboronic derivatives. Bioorg Chem 2021; 119:105560. [PMID: 34942467 DOI: 10.1016/j.bioorg.2021.105560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 01/16/2023]
Abstract
The [2-formyl-4-(trifluoromethyl)phenyl]boronic acid as well as its benzoxaborole and bis(benzoxaborole) derivatives were obtained and their properties studied. The 2-formyl compound displays an unusual structure in the crystalline state, with a significant twist of the boronic group, whereas in DMSO solution it tautomerizes with formation of a cyclic isomer. All the studied compounds exhibit relatively high acidity as well as a reasonable antimicrobial activity. Docking studies showed interactions of all the investigated compounds with the binding pocket of Candida albicans LeuRS. High activity against Bacillus cereus was determined for the 2-formyl compound as well as for the novel bis(benzoxaborole), whereas the studied benzoxaborole shows high antifungal action with MIC values equal to 7.8and 3.9 μg/mL against C. albicans and A. niger respectively. None of the studied compounds exhibits reasonable activity against E. coli.
Collapse
Affiliation(s)
| | - Magdalena Tarkowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Zofia Lazar
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Ewa Kaczorowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Izabela D Madura
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Anna Maria Dąbrowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Jacek Lipok
- Faculty of Chemistry, University of Opole, Oleska 48, Opole 45-052 , Poland
| | - Dorota Wieczorek
- Faculty of Chemistry, University of Opole, Oleska 48, Opole 45-052 , Poland
| |
Collapse
|
7
|
Vibrational Properties of Benzoxaboroles and Their Interactions with Candida albicans’ LeuRS. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Benzoxaboroles have emerged over the past decade mainly due to their growing medicinal importance. Regarding the wide application of IR spectroscopy in the pharmaceutical industry, the vibrational properties of over a dozen of benzoxaboroles were described, based on results of DFT calculations as well as IR and Raman spectra measurements. Investigated series of compounds included the currently available antifungal drug (Tavaborole, AN2690) as well as its derivatives. An intense and well-isolated band corresponding to the B-OH group stretching vibrations was present in all experimental IR spectra in the range of 1446–1414 cm−1 and can be considered as characteristic for benzoxaboroles. The vibrational properties of benzoxaboroles are shown to be affected by the formation of intramolecular as well as intermolecular hydrogen bonds, which should also influence the interactions of benzoxaboroles with biomolecules and impact on their biological functions. Docking studies of the benzoxaboroles’ adenosine monophosphate (AMP) spiroboronates into the Candida albicans leucyl-RS synthetase binding pocket showed that the introduction of an amine substituent has a strong influence on their binding. The determined values of inhibition constants manifest high potential of some of the investigated molecules as possible inhibitors of that enzyme.
Collapse
|
8
|
Tevyashova AN, Chudinov MV. Progress in the medicinal chemistry of organoboron compounds. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review aims to draw attention to the latest advances in the organoboron chemistry and therapeutic use of organoboron compounds. The synthetic strategies towards boron-containing compounds with proven in vitro and/or in vivo biological activities, including derivatives of boronic acids, benzoxaboroles, benzoxaborines and benzodiazaborines, are summarized. Approaches to the synthesis of hybrid structures containing an organoboron moiety as one of the pharmacophores are considered, and the effect of this modification on the pharmacological activity of the initial molecules is analyzed. On the basis of analysis of the published data, the most promising areas of research in the field of organoboron compounds are identified, including the latest methods of synthesis, modification and design of effective therapeutic agents.
The bibliography includes 246 references.
Collapse
|
9
|
Hanikoglu A, Ozben H, Hanikoglu F, Ozben T. Hybrid Compounds & Oxidative Stress Induced Apoptosis in Cancer Therapy. Curr Med Chem 2020; 27:2118-2132. [PMID: 30027838 DOI: 10.2174/0929867325666180719145819] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Abstract
Elevated Reactive Oxygen Species (ROS) generated by the conventional cancer therapies and the endogenous production of ROS have been observed in various types of cancers. In contrast to the harmful effects of oxidative stress in different pathologies other than cancer, ROS can speed anti-tumorigenic signaling and cause apoptosis of tumor cells via oxidative stress as demonstrated in several studies. The primary actions of antioxidants in cells are to provide a redox balance between reduction-oxidation reactions. Antioxidants in tumor cells can scavenge excess ROS, causing resistance to ROS induced apoptosis. Various chemotherapeutic drugs, in their clinical use, have evoked drug resistance and serious side effects. Consequently, drugs having single-targets are not able to provide an effective cancer therapy. Recently, developed hybrid anticancer drugs promise great therapeutic advantages due to their capacity to overcome the limitations encountered with conventional chemotherapeutic agents. Hybrid compounds have advantages in comparison to the single cancer drugs which have usually low solubility, adverse side effects, and drug resistance. This review addresses two important treatments strategies in cancer therapy: oxidative stress induced apoptosis and hybrid anticancer drugs.
Collapse
Affiliation(s)
- Aysegul Hanikoglu
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Hakan Ozben
- Department of Orthopaedics and Traumatology, Hand and Microsurgery Unit, Koc University School of Medicine, Istanbul, Turkey
| | - Ferhat Hanikoglu
- Faculty of Pharmacy, Department of Biochemistry, Biruni University, Istanbul, Turkey
| | - Tomris Ozben
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| |
Collapse
|
10
|
Guo T, Xia R, Liu T, Peng F, Tang X, Zhou Q, Luo H, Xue W. Synthesis, Biological Activity and Action Mechanism Study of Novel Chalcone Derivatives Containing Malonate. Chem Biodivers 2020; 17:e2000025. [DOI: 10.1002/cbdv.202000025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Tao Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Rongjiao Xia
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Hui Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| |
Collapse
|
11
|
Bilge Koçak S, Kaya Ö, Kılıç Z, Coban B, Yildiz U, Çoşut B. Syntheses, spectral and chiral properties and DNA interactions of multi-heterocyclic di- and trinuclear boron complexes. NEW J CHEM 2020. [DOI: 10.1039/d0nj04474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stereoisomers of Salen-boron complexes with two equivalent stereogenic B-centers giving rise to diastereoisomers were assigned by CD and NMR spectra.
Collapse
Affiliation(s)
| | - Özgecan Kaya
- Department of Chemistry
- Ankara University
- 06100 Ankara
- Turkey
| | - Zeynel Kılıç
- Department of Chemistry
- Ankara University
- 06100 Ankara
- Turkey
| | - Burak Coban
- Department of Chemistry
- Zonguldak Bülent Ecevit University
- Incivez
- 67100 Zonguldak
- Turkey
| | - Ufuk Yildiz
- Department of Chemistry
- Zonguldak Bülent Ecevit University
- Incivez
- 67100 Zonguldak
- Turkey
| | - Bünyemin Çoşut
- Department of Chemistry
- Gebze Technical University
- 41400 Gebze-Kocaeli
- Turkey
| |
Collapse
|
12
|
Li B, Hu X, Yang Y, Zhu M, Zhang J, Wang Y, Pei X, Zhou H, Wu J. GAS5/miR-21 Axis as a Potential Target to Rescue ZCL-082-Induced Autophagy of Female Germline Stem Cells In Vitro. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:436-447. [PMID: 31319247 PMCID: PMC6637212 DOI: 10.1016/j.omtn.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Several studies have recently revealed the regulatory mechanisms underlying female germline stem cell (FGSC) differentiation, proliferation, and apoptosis, but other biological processes such as autophagy and its mechanism in FGSCs are largely unclear. The use of small chemical compounds may be a good approach to further investigate the process and mechanism of autophagy in FGSC development. In this study, we used ZCL-082, a derivative of benzoxaboroles, to treat FGSCs. Using a cell counting kit-8 (CCK8) and 5-ethynyl-2′-deoxyuridine (EdU) assays, we found that ZCL-082 could significantly reduce the viability, proliferation, and number of FGSCs in vitro. Moreover, western blotting revealed that the expression of light chain 3 beta 2 (LC3B-II) in FGSCs was significantly increased after treatment with ZCL-082 for 3 and 6 h. Meanwhile, the expression of sequestosome-1 (SQSTM1) was significantly decreased. These results suggested that ZCL-082 can induce autophagy of FGSCs in vitro. Regarding the molecular mechanism, ZCL-082 could significantly reduce the expression of growth arrest-specific 5 (GAS5) long non-coding RNA, which could directly bind to microRNA-21a (miR-21a) and negatively regulate each other in FGSCs. Knockdown of GAS5 induced the autophagy of FGSCs, while GAS5 overexpression inhibited the autophagy of FGSCs in vitro and rescued FGSC autophagy induced by ZCL-082. Additionally, overexpression of miR-21a significantly enhanced LC3B-II protein expression while significantly reducing the expression of programmed cell death protein 4 (PDCD4) and SQSTM1 protein in FGSCs compared with control cells. The inhibition of miR-21a significantly reduced the basal or ZCL-082-induced upregulated expression of LC3B-II, and it significantly enhanced the expression of PDCD4 while downregulating the basal or ZCL-082-induced expression of SQSTM1 in FGSCs. Furthermore, the overexpression of GAS5 enhanced the protein expression of PDCD4, but knockdown of GAS5 reduced the protein expression of PDCD4. Taken together, these results suggested that ZCL-082 induced autophagy through GAS5 functioning as a competing endogenous RNA (ceRNA) sponge for miR-21a in FGSCs. It also suggested that the GAS5/miR-21a axis may be a potential therapeutic target for premature ovarian failure in the clinic.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaopeng Hu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Mingyan Zhu
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jiong Zhang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yanrong Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China.
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Zhang J, Zhang J, Hao G, Xin W, Yang F, Zhu M, Zhou H. Design, Synthesis, and Structure–Activity Relationship of 7-Propanamide Benzoxaboroles as Potent Anticancer Agents. J Med Chem 2019; 62:6765-6784. [DOI: 10.1021/acs.jmedchem.9b00736] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jinyi Zhang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Guiyun Hao
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Weixiang Xin
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Fei Yang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Mingyan Zhu
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
14
|
Fuscaldo RS, Vontobel PHV, Boeira EO, Moro AV, Costa JSD. Synthesis of Amino- and Hydroxymethyl Benzoxaboroles: Prominent Scaffolds for Further Functionalization. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rodrigo S. Fuscaldo
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| | - Pedro H. V. Vontobel
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| | - Eduam O. Boeira
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| | - Angélica V. Moro
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| | - Jessie S. da Costa
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| |
Collapse
|
15
|
Guo T, Xia R, Chen M, He J, Su S, Liu L, Li X, Xue W. Biological activity evaluation and action mechanism of chalcone derivatives containing thiophene sulfonate. RSC Adv 2019; 9:24942-24950. [PMID: 35528674 PMCID: PMC9069940 DOI: 10.1039/c9ra05349b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
A series of novel chalcone derivatives containing a thiophene sulfonate group were designed and synthesized. The structures of all title compounds were determined by 1H-NMR, 13C-NMR and HRMS. Antibacterial bioassays indicated that, compound 2l demonstrated excellent antibacterial activities against Xanthomonas axonopodis pv. citri (Xac), with an EC50 value of 11.4 μg mL−1, which is significantly superior to those of bismerthiazol (BT) (51.6 μg mL−1) and thiodiazole-copper (TC) (94.7 μg mL−1). Meanwhile, the mechanism of action of compound 2l was confirmed by using scanning electron microscopy (SEM). In addition, compound 2e showed remarkable inactivation activity against Tobacco mosaic virus (TMV), with an EC50 value of 44.3 μg mL−1, which was superior to that of ningnanmycin (120.6 μg mL−1). Microscale thermophoresis (MST) also showed that the binding of compounds 2e and 2h to Tobacco mosaic virus coat protein (TMV-CP) yielded Kd values of 0.270 and 0.301 μmol L−1, which are better than that of ningnanmycin (0.596 μmol L−1). At the same time, molecular docking studies for 2e and 2h with TMV-CP (PDB code: 1EI7) showed that the compound was embedded well in the pocket between the two subunits of TMV-CP in each case. These results suggested that chalcone derivatives containing a thiophene sulfonate group may be considered as activators in the design of antibacterial and antiviral agents. Synthesis, antibacterial, antiviral activities and action mechanism of chalcone derivatives containing thiophene sulfonate.![]()
Collapse
Affiliation(s)
- Tao Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Rongjiao Xia
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Jun He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| |
Collapse
|
16
|
Zhang J, Cheng ZQ, Song JL, Tao HR, Zhu K, Muehlmann LA, Jiang CS, Zhang H. Synthesis and biological evaluation of 2-(3-aminophenyl)-benzothiazoles as antiproliferative and apoptosis-inducing agents. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2274-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
|
18
|
Psurski M, Łupicka-Słowik A, Adamczyk-Woźniak A, Wietrzyk J, Sporzyński A. Discovering simple phenylboronic acid and benzoxaborole derivatives for experimental oncology - phase cycle-specific inducers of apoptosis in A2780 ovarian cancer cells. Invest New Drugs 2018; 37:35-46. [PMID: 29779163 PMCID: PMC6510839 DOI: 10.1007/s10637-018-0611-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022]
Abstract
Objective The aim of the study was to evaluate the antiproliferative potential of simple phenylboronic acid and benzoxaborole derivatives as well as to provide preliminary insight into their mode of action in cancer cells in vitro. Methods The antiproliferative activity was assessed in five diverse cancer cell lines via the SRB method (sulforhodamine B) or MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method after 72 h of treatment. Further studies of the mechanism of action consisted of the influence of the compounds on cell cycle progression and apoptosis induction, which was assessed by flow cytometry, caspase-3 enzymatic activity, fluorescence microscopy and western blot analysis. Results A clear structure-activity relationship was observed for both groups of compounds with several representatives evaluated as highly active antiproliferative agents with low micromolar [Formula: see text] values. 2-Fluoro-6-formylphenylboronic acid (18) and 3-morpholino-5-fluorobenzoxaborole (27) exhibited strong cell cycle arrest induction in G2/M associated with caspase-3 activation in an A2780 ovarian cancer cell line. These events were accompanied by a mitotic catastrophe cell morphology and an increased percentage of aneuploid and tetraploid cells. Further experiments indicated that the compounds were phase cycle-specific agents since cells co-treated with hydroxyurea were less sensitive. The observed cell cycle arrest resulted from significant p21 accumulation and was associated neither with cyclin B1 nor β-tubulin degradation. Conclusion Phenylboronic acid and benzoxaborole derivatives were found to be highly promising antiproliferative and proapoptotic compounds with a cell cycle-specific mode of action. The presented data support their candidacy for further studies as a novel class of potential anticancer agents.
Collapse
Affiliation(s)
- Mateusz Psurski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla St, 53114, Wrocław, Poland.
| | - Agnieszka Łupicka-Słowik
- Department of Medicinal Chemistry and Microbiology, Wrocław University of Science and Technology, 29 Wybrzeże Wyspiańskiego St, 50370, Wrocław, Poland
| | | | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla St, 53114, Wrocław, Poland
| | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St, 00664, Warsaw, Poland
| |
Collapse
|
19
|
Park S, Kim EH, Kim J, Kim SH, Kim I. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents. Eur J Med Chem 2018; 144:435-443. [DOI: 10.1016/j.ejmech.2017.12.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
|
20
|
Synthesis, Antimicrobial, and Computational Evaluation of Novel Isobutylchalcones as Antimicrobial Agents. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2017; 2017:6873924. [PMID: 29441207 PMCID: PMC5758854 DOI: 10.1155/2017/6873924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/12/2017] [Indexed: 01/03/2023]
Abstract
A series of 25 new chalcones were synthesized by Claisen-Schmidt condensation, well characterized by spectroscopic data, and evaluated for their antibacterial and antifungal activities by serial tube dilution method. Among the compounds tested, A3 and A6 containing 2,4-dichlorophenyl and 2,4-difluorophenyl moiety, respectively, were found to be the most potent in the series against both bacterial and fungal strains with a MIC value of 16 µg/mL in each case. Further computational evaluation for antimicrobial activity was performed by atom based 3D-QSAR using PHASE™ software in order to have a correlation between the observed activities and predicted activities. The computational studies were in agreement with the in vitro antimicrobial results and had identified the most promising chalcones as antimicrobial agents and the responsible structural features for the proposed activity.
Collapse
|
21
|
Yang F, Zhu M, Zhang J, Zhou H. Synthesis of biologically active boron-containing compounds. MEDCHEMCOMM 2017; 9:201-211. [PMID: 30108914 DOI: 10.1039/c7md00552k] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/28/2017] [Indexed: 01/03/2023]
Abstract
Boron-containing compounds which possess unique and attractive properties have received increasing attention from the pharmaceutical industry and academia recently. They have shown interesting and useful biological activities, including antibacterial, antifungal, antiparasitic, antiviral, and anti-inflammatory activities. In this review, the synthetic strategies for various boron-containing compounds, including peptidyl boronic acids, benzoxaboroles, benzoxaborines, benzodiazaborines, amine carboxyboranes, and amine cyanoboranes are summarized. Representative structures of each structural class and recently developed biologically active boron-containing compounds are used as examples in this review.
Collapse
Affiliation(s)
- Fei Yang
- State Key Laboratory of Microbial Metabolism , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road, Minhang District , Shanghai 200240 , China . ; ; Tel: +86 21 34206721
| | - Mingyan Zhu
- State Key Laboratory of Microbial Metabolism , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road, Minhang District , Shanghai 200240 , China . ; ; Tel: +86 21 34206721
| | - Jinyi Zhang
- State Key Laboratory of Microbial Metabolism , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road, Minhang District , Shanghai 200240 , China . ; ; Tel: +86 21 34206721
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road, Minhang District , Shanghai 200240 , China . ; ; Tel: +86 21 34206721
| |
Collapse
|
22
|
Gan X, Hu D, Chen Z, Wang Y, Song B. Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazole-chalcone conjugates. Bioorg Med Chem Lett 2017; 27:4298-4301. [PMID: 28838690 DOI: 10.1016/j.bmcl.2017.08.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/21/2017] [Accepted: 08/17/2017] [Indexed: 11/27/2022]
Abstract
A series of novel 1,3,4-oxadiazole/thiadiazole-chalcone conjugates were synthesized and their in vitro and in vivo antiviral activities were evaluated via microscale thermophoresis method and half-leaf method, respectively. The in vitro results indicated that compounds 7g, 7l, 8h, and 8l displayed good antiviral activity against TMV, with the binding constant values of 5.93, 6.15, 6.02, and 5.04μM, respectively, which were comparable to that of Ninnanmycin (6.78μM) and even better than that of Ribavirin (99.25μM). The in vivo results demonstrated that compounds 7g, 7l, 8h, and 8l exhibited remarkable anti-TMV activity with the EC50 values of 33.66, 33.97, 33.87 and 30.57µg/mL, respectively, which were comparable to that of Ningnanmycin (36.85µg/mL) and superior to that of Ribavirin (88.52µg/mL). Interestingly, the trend of antiviral activity in vivo was consistent with the in vitro results.
Collapse
Affiliation(s)
- Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research, and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; College of Chemistry and Life Science, Guizhou Education University, Guiyang 550018, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research, and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Zhuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research, and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Yanjiao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research, and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research, and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|