1
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
2
|
Huang Z, Li L, Cheng B, Li D. Small molecules targeting HDAC6 for cancer treatment: Current progress and novel strategies. Biomed Pharmacother 2024; 178:117218. [PMID: 39084081 DOI: 10.1016/j.biopha.2024.117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a crucial role in the initiation and progression of various cancers, as its overexpression is linked to tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Therefore, HDAC6 has emerged as an attractive target for anticancer drug discovery in the past decade. However, the development of conventional HDAC6 inhibitors has been hampered by their limited clinical efficacy, acquired resistance, and inability to inhibit non-enzymatic functions of HDAC6. To overcome these challenges, new strategies, such as dual-acting inhibitors, targeted protein degradation (TPD) technologies (including PROTACs, HyT), are essential to enhance the anticancer activity of HDAC6 inhibitors. In this review, we focus on the recent advances in the design and development of HDAC6 modulators, including isoform-selective HDAC6 inhibitors, HDAC6-based dual-target inhibitors, and targeted protein degraders (PROTACs, HyT), from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for HDAC6-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Ling Li
- The Eighth Affiliated Hospital Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen 518000, China.
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
3
|
Schiedlauske K, Deipenbrock A, Pflieger M, Hamacher A, Hänsel J, Kassack MU, Kurz T, Teusch NE. Novel Histone Deacetylase (HDAC) Inhibitor Induces Apoptosis and Suppresses Invasion via E-Cadherin Upregulation in Pancreatic Ductal Adenocarcinoma (PDAC). Pharmaceuticals (Basel) 2024; 17:752. [PMID: 38931419 PMCID: PMC11206922 DOI: 10.3390/ph17060752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal form of pancreatic cancer characterized by therapy resistance and early metastasis, resulting in a low survival rate. Histone deacetylase (HDAC) inhibitors showed potential for the treatment of hematological malignancies. In PDAC, the overexpression of HDAC 2 is associated with the epithelial-mesenchymal transition (EMT), principally accompanied by the downregulation of the epithelial marker E-cadherin and increased metastatic capacity. The effector cytokine transforming growth factor-β (TGF β) is known to be a major inducer of the EMT in PDAC, leading to high metastatic and invasive potential. In addition, the overexpression of HDAC 6 in PDAC is associated with reduced apoptosis. Here, we have demonstrated that a novel HDAC 2/6 inhibitor not only significantly increased E-cadherin expression in PANC-1 cells (5.5-fold) and in 3D PDAC co-culture spheroids (2.5-fold) but was also able to reverse the TGF-β-induced downregulation of E-cadherin expression. Moreover, our study indicates that the HDAC inhibitor mediated re-differentiation resulting in a significant inhibition of tumor cell invasion by approximately 60% compared to control. In particular, we have shown that the HDAC inhibitor induces both apoptosis (2-fold) and cell cycle arrest. In conclusion, the HDAC 2/6 inhibitor acts by suppressing invasion via upregulating E-cadherin mediated by HDAC 2 blockade and by inducing cell cycle arrest leading to apoptosis via HDAC 6 inhibition. These results suggest that the HDAC 2/6 inhibitor might represent a novel therapeutic strategy for the treatment of PDAC tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Katja Schiedlauske
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alina Deipenbrock
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marc Pflieger
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jan Hänsel
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Nicole E. Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Wei W, Huang C, Zhang J, Chen Q, Liu Z, Ren X, Gan S, Wu P, Wang D, Tang BZ, Sun H. HDAC6-Activatable Multifunctional Near-Infrared Probe for Glioma Cell Detection and Elimination. Anal Chem 2024; 96:2406-2414. [PMID: 38308568 DOI: 10.1021/acs.analchem.3c04319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor associated with limited treatment options and high drug resistance, presenting significant challenges in the pursuit of effective treatment strategies. Epigenetic modifications have emerged as promising diagnostic biomarkers and therapeutic targets for GBM. For instance, histone deacetylase 6 (HDAC6) has been identified as a potential pharmacological target for GBM. Furthermore, the overexpression of monoamine oxidase A (MAO A) in glioma has been linked to tumor progression, making it an attractive target for therapy. In this study, we successfully engineered HDAC-MB, an activatable multifunctional small-molecule probe with the goal of efficiently detecting and killing glioma cells. HDAC-MB can be selectively activated by HDAC6, leading to the "turn on" of near-infrared fluorescence and effective inhibition of MAO A, along with potent photodynamic therapy (PDT) effects. Consequently, HDAC-MB not only enables the imaging of HDAC6 in live glioma cells but also exhibits the synergistic effect of MAO A inhibition and PDT, effectively inhibiting glioma invasion and inducing cellular apoptosis. The distinctive combination of features displayed by HDAC-MB positions it as a versatile and highly effective tool for the accurate diagnosis and treatment of glioma cells. This opens up opportunities to enhance therapy outcomes and explore future applications in glioma theranostics.
Collapse
Affiliation(s)
- Wenyu Wei
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Chen Huang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong 999077, China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Zhiyang Liu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Xiaojie Ren
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Shenglong Gan
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Pingzhou Wu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Dongqing Wang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
5
|
Beljkas M, Ilic A, Cebzan A, Radovic B, Djokovic N, Ruzic D, Nikolic K, Oljacic S. Targeting Histone Deacetylases 6 in Dual-Target Therapy of Cancer. Pharmaceutics 2023; 15:2581. [PMID: 38004560 PMCID: PMC10674519 DOI: 10.3390/pharmaceutics15112581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Histone deacetylases (HDACs) are the major regulators of the balance of acetylation of histone and non-histone proteins. In contrast to other HDAC isoforms, HDAC6 is mainly involved in maintaining the acetylation balance of many non-histone proteins. Therefore, the overexpression of HDAC6 is associated with tumorigenesis, invasion, migration, survival, apoptosis and growth of various malignancies. As a result, HDAC6 is considered a promising target for cancer treatment. However, none of selective HDAC6 inhibitors are in clinical use, mainly because of the low efficacy and high concentrations used to show anticancer properties, which may lead to off-target effects. Therefore, HDAC6 inhibitors with dual-target capabilities represent a new trend in cancer treatment, aiming to overcome the above problems. In this review, we summarize the advances in tumor treatment with dual-target HDAC6 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katarina Nikolic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| | - Slavica Oljacic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| |
Collapse
|
6
|
Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
7
|
Truong N, Goodis CC, Cottingham AL, Shaw JR, Fletcher S, Pearson RM. Modified Suberoylanilide Hydroxamic Acid Reduced Drug-Associated Immune Cell Death and Organ Damage under Lipopolysaccharide Inflammatory Challenge. ACS Pharmacol Transl Sci 2022; 5:1128-1141. [PMID: 36407956 PMCID: PMC9667537 DOI: 10.1021/acsptsci.2c00119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Histone deacetylase inhibitors (HDACi) induce potent anti-inflammatory responses when used to treat inflammatory diseases. Suberoylanilide hydroxamic acid (SAHA), a pan-HDACi, decreases pro-inflammatory cytokine levels and attenuates cytokine storm in sepsis; however, its toxicity profile toward immune cells has limited its use as a sepsis therapeutic. Here, we developed a modification to SAHA by para-hydroxymethylating the capping group to generate SAHA-OH. We discovered that SAHA-OH provides a favorable improvement to the toxicity profile compared to SAHA. SAHA-OH significantly reduced primary macrophage apoptosis and splenic B cell death as well as mitigated organ damage using a lipopolysaccharide (LPS)-induced endotoxemia mouse model. Furthermore, SAHA-OH retained anti-inflammatory responses similar to SAHA as measured by reductions in LPS-induced proinflammatory cytokine secretions in vitro and in vivo. These effects were attributed to a decreased selectivity of HDAC1, 2, 3, 8 and an increased selectivity for HDAC6 for SAHA-OH as determined by IC50 values. Our results support the potential for SAHA-OH to modulate acute proinflammatory responses while mitigating SAHA-associated drug toxicity for use in the treatment of inflammation-associated diseases and conditions.
Collapse
Affiliation(s)
- Nhu Truong
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Christopher C. Goodis
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Andrea L. Cottingham
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jacob R. Shaw
- Department
of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Steven Fletcher
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Ryan M. Pearson
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
- Department
of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
- Marlene
and Stewart Greenbaum Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
8
|
Jiang XC, Tu FH, Wei LY, Wang BZ, Yuan H, Yuan JM, Rao Y, Huang SL, Li QJ, Ou TM, Wang HG, Tan JH, Chen SB, Huang ZS. Discovery of a Novel G-Quadruplex and Histone Deacetylase (HDAC) Dual-Targeting Agent for the Treatment of Triple-Negative Breast Cancer. J Med Chem 2022; 65:12346-12366. [PMID: 36053318 DOI: 10.1021/acs.jmedchem.2c01058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of triple-negative breast cancer (TNBC) is highly associated with G-quadruplex (G4); thus, targeting G4 is a potential strategy for TNBC therapy. Because concomitant histone deacetylases (HDAC) inhibition could amplify the impact of G4-targeting compounds, we designed and synthesized two novel series of G4/HDAC dual-targeting compounds by connecting the zinc-binding pharmacophore of HDAC inhibitors to the G4-targeting isaindigotone scaffold (1). Among the new compounds, a6 with the potent HDAC inhibitory and G4 stabilizing activity could induce more DNA G4 formation than SAHA and 1 in TNBC cells. Remarkably, a6 caused more G4-related DNA damage and G4-related differentially expressed genes, consistent with its effect on disrupting the cell cycle, invasion, and glycolysis. Furthermore, a6 significantly suppresses the proliferation of various TNBC cells and the MDA-MB-231 xenograft model without evident toxicity. Our study suggests a novel strategy for TNBC therapeutics through dual-targeting HDAC and G4.
Collapse
Affiliation(s)
- Xin-Chen Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang-Hai Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Li-Yuan Wei
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo-Zheng Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing-Mei Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Gen Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
9
|
Fontana A, Cursaro I, Carullo G, Gemma S, Butini S, Campiani G. A Therapeutic Perspective of HDAC8 in Different Diseases: An Overview of Selective Inhibitors. Int J Mol Sci 2022; 23:ijms231710014. [PMID: 36077415 PMCID: PMC9456347 DOI: 10.3390/ijms231710014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylases (HDACs) are epigenetic enzymes which participate in transcriptional repression and chromatin condensation mechanisms by removing the acetyl moiety from acetylated ε-amino group of histone lysines and other non-histone proteins. In recent years, HDAC8, a class I HDAC, has emerged as a promising target for different disorders, including X-linked intellectual disability, fibrotic diseases, cancer, and various neuropathological conditions. Selective HDAC8 targeting is required to limit side effects deriving from the treatment with pan-HDAC inhibitors (HDACis); thus, many endeavours have focused on the development of selective HDAC8is. In addition, polypharmacological approaches have been explored to achieve a synergistic action on multi-factorial diseases or to enhance the drug efficacy. In this frame, proteolysis-targeting chimeras (PROTACs) might be regarded as a dual-targeting approach for attaining HDAC8 proteasomal degradation. This review highlights the most relevant and recent advances relative to HDAC8 validation in various diseases, providing a snapshot of the current selective HDAC8is, with a focus on polyfunctional modulators.
Collapse
Affiliation(s)
- Anna Fontana
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Ilaria Cursaro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriele Carullo
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-057-723-4161
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
10
|
Hashimoto K, Ide S, Arata M, Nakata A, Ito A, Ito TK, Kudo N, Lin B, Nunomura K, Tsuganezawa K, Yoshida M, Nagaoka Y, Sumiyoshi T. Discovery of Benzylpiperazine Derivatives as CNS-Penetrant and Selective Histone Deacetylase 6 Inhibitors. ACS Med Chem Lett 2022; 13:1077-1082. [DOI: 10.1021/acsmedchemlett.2c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Kosuke Hashimoto
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Mayumi Arata
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akiko Nakata
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takashi K. Ito
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Norio Kudo
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - Keiko Tsuganezawa
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamic Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Minoru Yoshida
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Nagaoka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Takaaki Sumiyoshi
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
11
|
Zhang Y, Andrade R, Hanna AA, Pflum MKH. Evidence that HDAC7 acts as an epigenetic "reader" of AR acetylation through NCoR-HDAC3 dissociation. Cell Chem Biol 2022; 29:1162-1173.e5. [PMID: 35709754 DOI: 10.1016/j.chembiol.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/30/2021] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Histone deacetylase (HDAC) proteins are epigenetic regulators that govern a wide variety of cellular events. With a role in cancer formation, HDAC inhibitors have emerged as anti-cancer therapeutics. Among the eleven metal-dependent class I, II, and IV HDAC proteins targeted by inhibitor drugs, class IIa HDAC4, -5, -7, and -9 harbor low deacetylase activity and are hypothesized to be "reader" proteins, which bind to post-translationally acetylated lysine. However, evidence linking acetyllysine binding to a downstream functional event is lacking. Here, we report for the first time that HDAC4, -5, and -7 dissociated from corepressor NCoR in the presence of an acetyllysine-containing peptide, consistent with reader function. Documenting the biological consequences of this possible reader function, mutation of a critical acetylation site regulated androgen receptor (AR) transcriptional activation function through HDAC7-NCoR-HDAC3 dissociation. The data document the first evidence consistent with epigenetic-reader functions of class IIa HDAC proteins.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Rafael Andrade
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Anthony A Hanna
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| |
Collapse
|
12
|
Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 2021; 277:119504. [PMID: 33872660 DOI: 10.1016/j.lfs.2021.119504] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The role of genetic and epigenetic factors in tumor initiation and progression is well documented. Histone deacetylases (HDACs), histone methyl transferases (HMTs), and DNA methyl transferases. (DNMTs) are the main proteins that are involved in regulating the chromatin conformation. Among these, histone deacetylases (HDAC) deacetylate the histone and induce gene repression thereby leading to cancer. In contrast, histone acetyl transferases (HATs) that include GCN5, p300/CBP, PCAF, Tip 60 acetylate the histones. HDAC inhibitors are potent drug molecules that can induce acetylation of histones at lysine residues and induce open chromatin conformation at tumor suppressor gene loci and thus resulting in tumor suppression. The key processes regulated by HDAC inhibitors include cell-cycle arrest, chemo-sensitization, apoptosis induction, upregulation of tumor suppressors. Even though FDA approved drugs are confined mainly to haematological malignancies, the research on HDAC inhibitors in glioblastoma multiforme and triple negative breast cancer (TNBC) are providing positive results. Thus, several combinations of HDAC inhibitors along with DNA methyl transferase inhibitors and histone methyl transferase inhibitors are in clinical trials. This review focuses on how HDAC inhibitors regulate the expression of coding and non-coding genes with specific emphasis on their anti-cancer potential.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, Telangana, India
| | - Rajasekhar Reddy Manyam
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
13
|
Bhagat SD, Chanchal A, Gujrati M, Banerjee A, Mishra RK, Srivastava A. Implantable HDAC-inhibiting chemotherapeutics derived from hydrophobic amino acids for localized anticancer therapy. Biomater Sci 2021; 9:261-271. [PMID: 33196720 DOI: 10.1039/d0bm01417f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epigenetic targeting of different cancers by inhibiting particular histone deacetylase (HDAC) isozymes is a promising treatment approach against cancer. Development of locally-implantable molecular inhibitors of HDAC (henceforth called HDACi) promises high tumour site concentration and reduced systemic degradation of the HDACi. Herein, we report the design of such implantable HDACi based on amphiphilic derivatives of hydrophobic amino acids endowed with a hydroxamic acid (hxa)-based zinc-binding residue. The amino acids present in HDACi influenced the HDAC isozyme that could be inhibited most effectively; the l-phenylalanine derivative 4e inhibited the HDAC6 isozyme most potently (IC50 ∼ 88 nM), while the l-isoleucine derivative 4h was most effective against the isozyme HDAC2 (IC50 ∼ 94 nM). We also noticed that the l-Phe derivative 4e was up to 5× more potent towards inhibiting HDAC6 than its optical antipode 4f derived from d-Phe. This was rationalized in terms of the varying extent of penetration of the enantiomeric inhibitors inside the catalytic tunnel of the enzyme. Since the isozymes HDAC6 and HDAC2 are overexpressed in different cancer cells, 4e and 4h elicited selective anticancer activity in different cancer cell lines. Additive therapeutic action of the combination therapy of 4e and 4h was observed on lung cancer cells that overexpress both these isozymes. Further, 4e formed implantable self-assembled hydrogels that achieved sustained and selective killing of cancer cells in the vicinity of implantation.
Collapse
Affiliation(s)
- Somnath Dharmaraj Bhagat
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India.
| | | | | | | | | | | |
Collapse
|
14
|
Kashyap K, Kakkar R. Pharmacophore-enabled virtual screening, molecular docking and molecular dynamics studies for identification of potent and selective histone deacetylase 8 inhibitors. Comput Biol Med 2020; 123:103850. [PMID: 32658783 DOI: 10.1016/j.compbiomed.2020.103850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 11/15/2022]
Abstract
Histone deacetylases (HDACs) play important roles in various biological processes, but are also notorious for their over-expression in numerous cancers and neurological disorders. Therefore, the development of isoform selective HDAC inhibitors is crucial in order to prevent any side effects of pan inhibition. This work focuses on identifying novel inhibitors for the selective inhibition of HDAC8, an isoform implicated in fatal diseases like T-cell lymphoma, colon cancer and childhood neuroblastoma. Virtual screening of the 'In-trials' subset of ZINC database has been carried out with the help of two pharmacophore models signifying potent and selective HDAC8 inhibition. A detailed molecular docking strategy, followed by molecular dynamics simulations and post-scoring with MM-GBSA calculations, has led to the identification of six promising molecules that have excellent binding with the HDAC8 active site. In order to establish the selectivity profile of these molecules, their binding to off-target HDAC isoforms has also been evaluated. Substitution analyses of the proposed inhibitors suggest that aromatic substituents that access the adjacent hydrophobic pocket of the HDAC8 active site have the potential to further enhance the HDAC8 selectivity.
Collapse
Affiliation(s)
- Kriti Kashyap
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
15
|
He J, Wang S, Liu X, Lin R, Deng F, Jia Z, Zhang C, Li Z, Zhu H, Tang L, Yang P, He D, Jia Q, Zhang Y. Synthesis and Biological Evaluation of HDAC Inhibitors With a Novel Zinc Binding Group. Front Chem 2020; 8:256. [PMID: 32351936 PMCID: PMC7174758 DOI: 10.3389/fchem.2020.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/17/2020] [Indexed: 01/17/2023] Open
Abstract
Vorinostat (SAHA) with great therapeutic potential has been approved by the FDA for the treatment of cutaneous T-cell lymphoma as the first HDACs inhibitor, but the drawbacks associated with hydroxamic acid group (poor stability, easy metabolism, weak binding ability to class IIa isozymes, and poor selectivity) have been exposed during the continuous clinical application. Based on the pharmacophore of HDAC inhibitors, two series of compounds with novel zinc binding group (ZBG) were designed and synthesized, and the antitumor bioactivities were evaluated in four human cancer cell lines (A549, Hela, HepG2, and MCF-7). Among the synthesized compounds, compounds a6, a9, a10, b8, and b9 exhibited promising inhibitory activities against the selected tumor cell lines, especially compounds a9 and b8 on Hela's cytostatic activity (a9: IC50 = 11.15 ± 3.24 μM; b8: IC50 = 13.68 ± 1.31 μM). The enzyme inhibition assay against Hela extracts and HDAC1&6 subtypes showed that compound a9 had a certain broad-spectrum inhibitory activity, while compound b8 had selective inhibitory activity against HDAC6, which was consistent with Western blot results. In addition, the inhibitory mechanism of compounds a9 and b8 in HDAC1&6 were both compared through computational approaches, and the binding interactions between the compounds and the enzymes target were analyzed from the perspective of energy profile and conformation. In summary, the compounds with novel ZBG exhibited certain antitumor activities, providing valuable hints for the discovery of novel HDAC inhibitors.
Collapse
Affiliation(s)
- Junquan He
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China.,NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Gansu Institute for Drug Control, Lanzhou, China
| | - Songsong Wang
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xingang Liu
- College of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Ruili Lin
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China.,NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Gansu Institute for Drug Control, Lanzhou, China
| | - Fang Deng
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China
| | - Zhong Jia
- Pharmacy Department, Lanzhou Second People's Hospital, Lanzhou, China
| | - Chenghong Zhang
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China
| | - Zhao Li
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China
| | - Hongtian Zhu
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China
| | - Lei Tang
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China
| | - Pingrong Yang
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China.,NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Gansu Institute for Drug Control, Lanzhou, China
| | - Dian He
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, China.,Pharmacy Department, Lanzhou Second People's Hospital, Lanzhou, China
| | - Qingzhong Jia
- College of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Yang Zhang
- College of Pharmacy, Hebei Medical University, Shijiazhuang, China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Kashyap K, Kakkar R. An insight into selective and potent inhibition of histone deacetylase 8 through induced-fit docking, pharmacophore modeling and QSAR studies. J Biomol Struct Dyn 2019; 38:48-65. [PMID: 30633630 DOI: 10.1080/07391102.2019.1567388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histone deacetylase 8 (HDAC8) has emerged as an important therapeutic target due to its involvement in various cancerous and neurodegenerative disease states. Since pan HDAC inhibition has been linked to various side effects, the need of the hour is to develop inhibitors truly selective for one isoform. This work attempts to explore the structural basis of selective HDAC8 inhibition by docking, pharmacophore and 3 D QSAR studies of 53 highly potent and highly selective triazol-based hydroxamic acid inhibitors. The binding modes of these novel inhibitors have been explored via Glide XP (Extra Precision) and induced-fit docking (IFD) strategies. The IFD poses of highly active and selective inhibitors showed conformational changes in active site residues like Trp141, Phe152 and Phe208, which were further verified by molecular dynamics simulations. A new CH-π interaction, which is atypical of HDAC inhibitors, was also observed in case of some highly selective inhibitors. Two pharmacophore models have been proposed; one highlights the structural basis of potency of these inhibitors and the other focuses on the selectivity. The corresponding QSAR models, obtained from alignment of the inhibitors as per the proposed pharmacophore models, are highly statistically significant. These models highlight the importance of size of the hydrophobic and aromatic groups present in the inhibitors and their contribution to activity of the inhibitors. The ADMET properties of the ligand library have also been analyzed and the predicted descriptors have been correlated with activity using principal components analysis to gain insight into the effect of pharmacokinetic properties on the activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kriti Kashyap
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
17
|
The structural requirements of histone deacetylase inhibitors: C4-modified SAHA analogs display dual HDAC6/HDAC8 selectivity. Eur J Med Chem 2017; 143:1790-1806. [PMID: 29150330 DOI: 10.1016/j.ejmech.2017.10.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/28/2017] [Accepted: 10/28/2017] [Indexed: 01/29/2023]
Abstract
Histone deacetylase (HDAC) enzymes govern the post-translational acetylation state of lysine residues on protein substrates, leading to regulatory changes in cell function. Due to their role in cancers, HDAC proteins have emerged as promising targets for cancer treatment. Four HDAC inhibitors have been approved as anti-cancer therapeutics, including SAHA (Suberoylanilide hydroxamic acid, Vorinostat, Zolinza). SAHA is a nonselective HDAC inhibitor that targets most of the eleven HDAC isoforms. The nonselectivity of SAHA might account for its clinical side effects, but certainly limits its use as a chemical tool to study cancer-related HDAC cell biology. Herein, the nonselective HDAC inhibitor SAHA was modified at the C4 position of the linker to explore activity and selectivity. Several C4-modified SAHA analogs exhibited dual HDAC6/8 selectivity. Interestingly, (R)-C4-benzyl SAHA displayed 520- to 1300-fold selectivity for HDAC6 and HDAC8 over HDAC1, 2, and 3, with IC50 values of 48 and 27 nM with HDAC6 and 8, respectively. In cellulo testing of the inhibitors was consistent with the observed in vitro selectivity. Docking studies provided a structural rationale for selectivity. The C4-SAHA analogs represent useful chemical tools to understand the role of HDAC6 and HDAC8 in cancer biology and exciting lead compounds for targeting of both HDAC6 and HDAC8 in various cancers.
Collapse
|