1
|
Akbar W, Ehsan S, Siddique SA, Sarfraz M, Shaheen F, Shafqat A, Shahnaz, Siddique MBA, Saeed A, Al-Salahi R, El Bakri Y. Solid Phase Synthesis, DFT Calculations, Molecular Docking, and Biological Studies of Symmetrical N 2, N 4, N 6-Trisubstituted-1,3,5-triazines. ACS OMEGA 2024; 9:34428-34444. [PMID: 39157158 PMCID: PMC11325405 DOI: 10.1021/acsomega.4c01980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
A diversity-oriented, multicomponent convergent synthesis of symmetrical triazines through a one-pot protocol is presented in this research project. The assembly of trisubstituted triazines was initially carried out using easily available reagents through three different protocols, i.e., conventional, MW-assisted synthesis, and solid-supported MW-assisted synthesis using organic and inorganic support to carry out a comparative analysis as to which procedure best corresponds to a greener synthesis protocol. The compounds formed were characterized for structure elucidation and subjected to in vitro anticancer and antibacterial screening. Additionally, computational studies, such as DFT calculations and molecular docking analyses, were conducted.
Collapse
Affiliation(s)
- Wajiha Akbar
- Department
of Chemistry, Lahore College for Women University, Lahore 44444, Pakistan
| | - Shahana Ehsan
- Department
of Chemistry, Lahore College for Women University, Lahore 44444, Pakistan
| | - Sabir Ali Siddique
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Baghdad-Ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Muhammad Sarfraz
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Baghdad-Ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Faiqa Shaheen
- School
of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Ayesha Shafqat
- School
of Botany, Minhaj University, Lahore 54770, Pakistan
| | - Shahnaz
- Department
of Chemistry, Lahore College for Women University, Lahore 44444, Pakistan
| | | | - Ayesha Saeed
- Department
of Chemistry, Lahore College for Women University, Lahore 44444, Pakistan
| | - Rashad Al-Salahi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Youness El Bakri
- Department
of Theoretical and Applied Chemistry, South
Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russian Federation
| |
Collapse
|
2
|
Bareth D, Jain S, Kumawat J, Kishore D, Dwivedi J, Hashmi SZ. Synthetic and pharmacological developments in the hybrid s-triazine moiety: A review. Bioorg Chem 2024; 143:106971. [PMID: 38016395 DOI: 10.1016/j.bioorg.2023.106971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
This article summarizes the most recent advancements in the synthetic and pharmacological approaches along with the structure activity relationship towards the s-triazine and its derivatives. Much attention has been given to s-triazine core due to its facile synthesis, interesting pharmacology, high reactivity, and binding characteristics towards various enzymes. An array of biological applications has been demonstrated by s-triazines including antimalarial, anti-HIV, anti-viral, antimicrobial, anti-tuberculosis to name a few. In the present investigation s-triazine based molecular structures have been assembled in respect to their synthesis and medicinal properties. Further, the competence of s-triazine has been correlated and compared with the other heterocyclic moieties to substantiates-triazine a privileged scaffold. From the literature it is revealed that nucleophilic substitution at 2, 4, and 6 positions is significant for various biological applications. This article would help in assisting the chemists in designing novel molecular entities with high medicinal value.
Collapse
Affiliation(s)
- Diksha Bareth
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonia Zeba Hashmi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
3
|
Dubey P, Pathak DP, Ali F, Chauhan G, Kalaiselvan V. In-vitro Evaluation of Triazine Scaffold for Anticancer Drug Development: A Review. Curr Drug Discov Technol 2024; 21:e170723218813. [PMID: 37461340 DOI: 10.2174/1570163820666230717161610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION The widespread importance of the synthesis and modification of anticancer agents has given rise to many numbers of medicinal chemistry programs. In this regard, triazine derivatives have attracted attention due to their remarkable activity against a wide range of cancer cells. This evaluation covers work reports to define the anticancer activity, the most active synthesized compound for the target, the SAR and, when described, the probable MOA besides similarly considered to deliver complete and target-pointed data for the development of types of anti-tumour medicines of triazine derivatives. Triazine scaffold for the development of anticancer analogues. Triazine can also relate to numerous beneficial targets, and their analogues have auspicious in-vitro and in-vivo anti-tumour activity. Fused molecules can improve efficacy, and drug resistance and diminish side effects, and numerous hybrid molecules are beneath diverse stages of clinical trials, so hybrid derivatives of triazine may offer valuable therapeutic involvement for the dealing of tumours. OBJECTIVE The objective of the recent review was to summarize the recent reports on triazine as well as its analogues with respect to its anticancer therapeutic potential. CONCLUSION The content of the review would be helpful to update the researchers working towards the synthesis and designing of new molecules for the treatment of various types of cancer disease with the recent molecules that have been produced from the triazine scaffold. Triazine scaffolds based on 1,3,5-triazine considerably boost molecular diversity levels and enable covering chemical space in key medicinal chemistry fields.
Collapse
Affiliation(s)
- Pragya Dubey
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli- Badarpur Road, Sector 3, Pushp Vihar, New Delhi, 110017, India
| | - Dharam Pal Pathak
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli- Badarpur Road, Sector 3, Pushp Vihar, New Delhi, 110017, India
| | - Faraat Ali
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic
- Department of Licensing and Enforcement, Laboratory Services, Botswana Medicines Regulatory Authority, Gaborone, Botswana
| | - Garima Chauhan
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli- Badarpur Road, Sector 3, Pushp Vihar, New Delhi, 110017, India
| | - Vivekanandan Kalaiselvan
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, India
| |
Collapse
|
4
|
Hashem HE, Amr AEGE, Nossier ES, Anwar MM, Azmy EM. New Benzimidazole-, 1,2,4-Triazole-, and 1,3,5-Triazine-Based Derivatives as Potential EGFR WT and EGFR T790M Inhibitors: Microwave-Assisted Synthesis, Anticancer Evaluation, and Molecular Docking Study. ACS OMEGA 2022; 7:7155-7171. [PMID: 35252706 PMCID: PMC8892849 DOI: 10.1021/acsomega.1c06836] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 06/12/2023]
Abstract
A new series of benzimidazole, 1,2,4-triazole, and 1,3,5-triazine derivatives were designed and synthesized using a microwave irradiation synthetic approach utilizing 2-phenylacetyl isothiocyanate (1) as a key starting material. All the new analogues were evaluated as anticancer agents against a panel of cancer cell lines utilizing doxorubicin as a standard drug. Most of the tested derivatives exhibited selective cytotoxic activity against MCF-7 and A-549 cancer cell lines. Furthermore, the new target compounds 5, 6, and 7 as the most potent antiproliferative agents have been assessed as in vitro EGFRWT and EGFRT790M inhibitors compared to the reference drugs erlotinib and AZD9291. They represented more potent suppression activity against the mutated EGFRT790M than the wild-type EGFRWT. Moreover, the compounds 5, 6, and 7 down-regulated the oncogenic parameter p53 ubiquitination. A docking simulation of compound 6b was carried out to correlate its molecular structure with its significant EGFR inhibition potency and its possible binding interactions within the active site of EGFRWT and the mutant EGFRT790M.
Collapse
Affiliation(s)
- Heba E. Hashem
- Department
of Chemistry, Faculty of Women, Ain Shams
University, Heliopolis, Cairo 11757, Egypt
| | - Abd El-Galil E. Amr
- Pharmaceutical
Chemistry Department, Drug Exploration & Development Chair (DEDC),
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Applied
Organic Chemistry Department, National Research
Center, Dokki, Cairo 12622, Egypt
| | - Eman S. Nossier
- Pharmaceutical
Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy
(Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Manal M. Anwar
- Department
of Therapeutic Chemistry, National Research
Centre, Dokki, Cairo 12622, Egypt
| | - Eman M. Azmy
- Department
of Chemistry, Faculty of Women, Ain Shams
University, Heliopolis, Cairo 11757, Egypt
| |
Collapse
|
5
|
Gharat R, Prabhu A, Khambete MP. Potential of triazines in Alzheimer's disease: A versatile privileged scaffold. Arch Pharm (Weinheim) 2022; 355:e2100388. [DOI: 10.1002/ardp.202100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Ruchita Gharat
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy Mumbai Maharashtra India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy Mumbai Maharashtra India
| | - Mihir. P. Khambete
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy Mumbai Maharashtra India
| |
Collapse
|
6
|
Design, synthesis and structure-activity relationship studies of novel spirochromanone hydrochloride analogs as anticancer agents. Future Med Chem 2022; 14:325-342. [PMID: 34985322 DOI: 10.4155/fmc-2021-0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Literature reports suggest spirochromanone derivatives exhibit anticancer activity. Methodology: The authors designed and synthesized 18 spirochromanone derivatives (Csp 1-18). The compounds were characterized and evaluated for anticancer activity against human breast cancer (MCF-7) and murine melanoma (B16F10) cell lines. Results: The anticancer activity ranged from 4.34 to 29.31 μm. The most potent compounds, Csp 12 and Csp 18, were less toxic against the human embryonic kidney (HEK-293) cell line and ∼ two/∼four fold selective toward MCF-7 than B16F10 in comparison to the reference, BG-45. Csp 12 caused 28.6% total apoptosis, leading to significant cytotoxicity, and arrested the G2 phase of the cell cycle in B16F10 cells. A molecular docking study of Csp 12 exhibited effective binding at the active site of the epidermal growth factor receptor kinase domain. Conclusion: This study highlights the importance of spirochromanones as anticancer agents.
Collapse
|
7
|
Chitti S, Pulya S, Nandikolla A, Patel TK, Karan Kumar B, Murugesan S, Ghosh B, Sekhar KVGC. Design, synthesis and biological evaluation of 7-(5-((substituted - amino)-methyl)-thiophen-2-yl)-spiro-[chroman-2,4'-piperidin]-4-one hydrochloride analogues as anticancer agents. Bioorg Chem 2021; 112:104865. [PMID: 33812269 DOI: 10.1016/j.bioorg.2021.104865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Abstract
A series of thirty-one novel 7-(5-((amino)-methyl)-thiophen-2-yl)-spiro-[chroman-2,4'-piperidin]-4-one hydrochloride analogues (Cst 1 - 31) have been designed, synthesized and characterized by 1H NMR, 13C NMR and MS spectral analysis. Here, we evaluated the anticancer potential and biological results of low-molecular-weight bridgehead oxygen and nitrogen-containing spirochromanones on proliferation and apoptosis of the human breast cancer cell line (MCF-7) and Murine melanoma (B16F10). The anticancer activity ranged from 2.9 to 35.0 µM. The most potent compounds Cst-22, Cst-24 and Cst-31 were found to be less toxic against human embryonic kidney (HEK-293) cell lines. Cst-24 and Cst-31 were found to be causing significant cytotoxicity through apoptotic cell death and also G2 phase arrest of cell cycle in B16F10 cells. In-silico ADME prediction stidies of the titled compounds were found within the rules outlined, and these compounds may not face any pharmacokinetic associated issues in the mere future upon developmental stage. These conjugates may serve as a lead for the discovery of potential anticancer drug candidate with better therapeutic profile.
Collapse
Affiliation(s)
- Surendar Chitti
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana, India
| | - Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana, India
| | - Adinarayana Nandikolla
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana, India
| | - Tarun Kumar Patel
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana, India
| | - Banoth Karan Kumar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya vihar, Pilani 333031, Rajasthan, India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya vihar, Pilani 333031, Rajasthan, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana, India.
| | | |
Collapse
|
8
|
Majeed Ganai A, Khan Pathan T, Hampannavar GA, Pawar C, Obakachi VA, Kushwaha B, Deshwar Kushwaha N, Karpoormath R. Recent Advances on the s‐Triazine Scaffold with Emphasis on Synthesis, Structure‐Activity and Pharmacological Aspects: A Concise Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202004591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Tabasum Khan Pathan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Girish A. Hampannavar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
- Department of Pharmaceutical Chemistry K.L.E.U's College of Pharmacy Vidyanagar, Hubli 580031, Karnataka India
| | - Chandrakant Pawar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Vincent A. Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| |
Collapse
|
9
|
Moreno LM, Quiroga J, Abonia R, Lauria A, Martorana A, Insuasty H, Insuasty B. Synthesis, biological evaluation, and in silico studies of novel chalcone- and pyrazoline-based 1,3,5-triazines as potential anticancer agents. RSC Adv 2020; 10:34114-34129. [PMID: 35519030 PMCID: PMC9056798 DOI: 10.1039/d0ra06799g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Abstract
A novel series of triazin-chalcones (7,8)a-g and triazin-N-(3,5-dichlorophenyl)pyrazolines (9,10)a-g were synthesized and evaluated for their anticancer activity against nine different cancer strains. Triazine ketones 5 and 6 were synthesized from the cyanuric chloride 1 by using stepwise nucleophilic substitution of the chlorine atom. These ketones were subsequently subjected to a Claisen-Schmidt condensation reaction with aromatic aldehydes affording chalcones (7,8)a-g. Then, N-(3,5-dichlorophenyl)pyrazolines (9,10)a-g were obtained by cyclocondensation reactions of the respective chalcones (7,8)a-g with 3,5-dichlorophenylhydrazine. Among all the evaluated compounds, chalcones 7d,g and 8g exhibited more potent in vitro anticancer activity, with outstanding GI50 values ranging from 0.422 to 14.9 μM and LC50 values ranging from 5.08 μM to >100 μM. In silico studies, for both ligand- and structure-based, were executed to explore the inhibitory nature of chalcones and triazine derivatives. The results suggested that the evaluated compounds could act as modulators of the human thymidylate synthase enzyme.
Collapse
Affiliation(s)
- Leydi M Moreno
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia
- Center for Bioinformatics and Photonics-CIBioFI A.A. 25360 Cali Colombia
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia
- Center for Bioinformatics and Photonics-CIBioFI A.A. 25360 Cali Colombia
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF", Università di Palermo Viale delle Scienze Ed. 17 I-90128 Palermo Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF", Università di Palermo Viale delle Scienze Ed. 17 I-90128 Palermo Italy
| | - Henry Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad de Nariño A.A. 1175 Pasto Colombia
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia
- Center for Bioinformatics and Photonics-CIBioFI A.A. 25360 Cali Colombia
| |
Collapse
|
10
|
Guo W, Zhao M, Du C, Zheng L, Li L, Chen L, Tao K, Tan W, Xie Z, Cai L, Fan X, Zhang K. Visible-Light-Catalyzed [3 + 1 + 2] Coupling Annulations for the Synthesis of Unsymmetrical Trisubstituted Amino-1,3,5-triazines. J Org Chem 2019; 84:15508-15519. [DOI: 10.1021/acs.joc.9b02514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Mingming Zhao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Chengtang Du
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Luo Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liping Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Kailiang Tao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wen Tan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Kai Zhang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou 438000, China
| |
Collapse
|
11
|
Kruger TM, Givens BE, Lansakara TI, Bell KJ, Mohapatra H, Salem AK, Tivanski AV, Stevens LL. Mechanosensitive Endocytosis of High-Stiffness, Submicron Microgels in Macrophage and Hepatocarcinoma Cell Lines. ACS APPLIED BIO MATERIALS 2018; 1:1254-1265. [PMID: 34996229 DOI: 10.1021/acsabm.8b00111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanical properties of submicron particles offer a unique design space for advanced drug-delivery particle engineering. However, the recognition of this potential is limited by a poor consensus about both the specificity and sensitivity of mechanosensitive endocytosis over a broad particle stiffness range. In this report, our model series of polystyrene-co-poly(N-isopropylacrylamide) (pS-co-NIPAM) microgels have been prepared with a nominally constant monomer composition (50 mol % styrene and 50 mol % NIPAM) with varied bis-acrylamide cross-linking densities to introduce a tuned spectrum of particle mechanics without significant variation in particle size and surface charge. While previous mechanosensitive studies use particles with moduli ranging from 15 kPa to 20 MPa, the pS-co-NIPAM particles have Young's moduli (E) ranging from 300 to 700 MPa, which is drastically stiffer than these previous studies as well as pure pNIPAM. Despite this elevated stiffness, particle uptake in RAW264.7 murine macrophages displays a clear stiffness dependence, with a significant increase in particle uptake for our softest microgels after a 4 h incubation. Preferential uptake of the softest microgel, pS-co-NIPAM-1 (E = 310 kPa), was similarly observed with nonphagocytic HepG2 hepatoma cells; however, the uptake kinetics were distinct relative to that observed for RAW264.7 cells. Pharmacological inhibitors, used to probe for specific routes of particle internalization, identify actin- and microtubule-dependent pathways in RAW264.7 cells as sensitive particle mechanics. For our pS-co-NIPAM particles at nominally 300-400 nm in size, this microtubule-dependent pathway was interpreted as a phagocytic route. For our high-stiffness microgel series, this study provides evidence of cell-specific, mechanosensitive endocytosis in a distinctly new stiffness regime that will further broaden the functional landscape of mechanics as a design space for particle engineering.
Collapse
Affiliation(s)
- Terra M. Kruger
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Brittany E. Givens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
- Department of Chemical and Biochemical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Kendra J. Bell
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Himansu Mohapatra
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Alexei V. Tivanski
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Lewis L. Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
12
|
Sivakumar K, Parinamachivayam G, Murali Krishnan M, Chakravarty S, Bharathi A. Preparation, characterization and molecular modeling studies of the beta-cyclodextrin inclusion complex with benzoguanamine and its analytical application as chemosensor for the selective sensing of Ce 4. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 200:212-225. [PMID: 29689512 DOI: 10.1016/j.saa.2018.04.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
The inclusion complex of β-cyclodextrin (β-CD) with benzoguanamine (BGA) has been investigated in three states. UV-Visible and fluorescence spectral techniques are used in liquid state. FTIR, NMR and MASS techniques are used in solid state and virtual state studies are done by molecular simulation work. The binding constants for the formation of 1:1 BGA:β-CD inclusion complex is estimated by UV-Visible and fluorescence spectral techniques. The chemosensory ability of BGA:β-CD complex was investigated thoroughly for various metal cations and we found the emission of complex showed a linear increase in the intensity for Ce4+ with the linearity range of 1000 μM-2000 μM. Sensitivity analysis shows good sensing for Ce4+ with the LOD of 671 μM and LOQ of 2034 μM. Our result suggests that the BGA:β-CD inclusion complex would be promising material for developing solid state sensory device for sensing Ce4+.
Collapse
Affiliation(s)
- K Sivakumar
- Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University (SCSVMV University), Enathur, Kanchipuram 631 561, Tamilnadu, India.
| | - G Parinamachivayam
- Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University (SCSVMV University), Enathur, Kanchipuram 631 561, Tamilnadu, India
| | - M Murali Krishnan
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamilnadu, India
| | - Sujay Chakravarty
- University Grants Commission-Department of Atomic Energy Consortium for Scientific Research, Kalpakkam Node, Kokilamedu 603 104, Tamilnadu, India
| | - A Bharathi
- University Grants Commission-Department of Atomic Energy Consortium for Scientific Research, Kalpakkam Node, Kokilamedu 603 104, Tamilnadu, India
| |
Collapse
|