1
|
Liu B, Yao L. Camptothecin: a key building block in the design of anti-tumor agents. Future Med Chem 2025; 17:381-384. [PMID: 39862114 PMCID: PMC11834417 DOI: 10.1080/17568919.2025.2458455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Affiliation(s)
- Bowen Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System, Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System, Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
2
|
Wang X, Zhuang Y, Wang Y, Jiang M, Yao L. The recent developments of camptothecin and its derivatives as potential anti-tumor agents. Eur J Med Chem 2023; 260:115710. [PMID: 37595544 DOI: 10.1016/j.ejmech.2023.115710] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
This review article focuses on the research progress made in the structural modifications of camptothecin (CPT), a potent cytotoxic natural alkaloid. CPT possesses a unique 5-fused ring structure and exhibits various beneficial activities such as anti-proliferative, anti-fungal, insecticidal, and anti-SARS-CoV-2 properties. CPT and its analogs, including Topotecan and Irinotecan, have been successfully developed and marketed as topoisomerase I inhibitors. To enhance the therapeutic potential of CPT, researchers have undertaken structural modifications primarily on the A, B, and E rings of the CPT core structure. These modifications aim to improve the efficacy, selectivity, and pharmacokinetic properties of CPT derivatives. The article reviews the advancements in hybridizing CPT with other bioactive compounds, the synthesis of novel CPT analogs, and their associated biological activities. Moreover, the structure-activity relationship (SAR) of these modified CPT derivatives is summarized to gain insights into their structure-function correlations. In addition to discussing the modifications and biological activities of CPT derivatives, the article also touches upon the mechanism of parent drug release. Many CPT derivatives are prodrugs, meaning they require metabolic activation to generate the active form of the drug. It is a resource for researchers interested in developing novel anti-tumor agents based on CPT, addressing the limitations associated with the parent drug, and exploring various aspects of CPT modifications.
Collapse
Affiliation(s)
- Xianzhang Wang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Yumeng Zhuang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Yuankun Wang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Maokai Jiang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Lei Yao
- School of Pharmacy, Yantai University, Yantai, 264005, China.
| |
Collapse
|
3
|
Xu Z, Eichler B, Klausner EA, Duffy-Matzner J, Zheng W. Lead/Drug Discovery from Natural Resources. Molecules 2022; 27:8280. [PMID: 36500375 PMCID: PMC9736696 DOI: 10.3390/molecules27238280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Natural products and their derivatives have been shown to be effective drug candidates against various diseases for many years. Over a long period of time, nature has produced an abundant and prosperous source pool for novel therapeutic agents with distinctive structures. Major natural-product-based drugs approved for clinical use include anti-infectives and anticancer agents. This paper will review some natural-product-related potent anticancer, anti-HIV, antibacterial and antimalarial drugs or lead compounds mainly discovered from 2016 to 2022. Structurally typical marine bioactive products are also included. Molecular modeling, machine learning, bioinformatics and other computer-assisted techniques that are very important in narrowing down bioactive core structural scaffolds and helping to design new structures to fight against key disease-associated molecular targets based on available natural products are considered and briefly reviewed.
Collapse
Affiliation(s)
- Zhihong Xu
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
- Institute of Interventional & Vascular Surgery, Tongji University, Shanghai 200072, China
- Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA
| | - Barrett Eichler
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
| | - Eytan A. Klausner
- Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA
| | - Jetty Duffy-Matzner
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, 1801 Fayetteville St., Durham, NC 27707, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Khaiwa N, Maarouf NR, Darwish MH, Alhamad DWM, Sebastian A, Hamad M, Omar HA, Orive G, Al-Tel TH. Camptothecin's journey from discovery to WHO Essential Medicine: Fifty years of promise. Eur J Med Chem 2021; 223:113639. [PMID: 34175539 DOI: 10.1016/j.ejmech.2021.113639] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022]
Abstract
Nature represents a rich source of compounds used for the treatment of many diseases. Camptothecin (CPT), isolated from the bark of Camptotheca acuminata, is a cytotoxic alkaloid that attenuates cancer cell replication by inhibiting DNA topoisomerase 1. Despite its promising and wide spectrum antiproliferative activity, its use is limited due to low solubility, instability, acquired tumour cell resistance, and remarkable toxicity. This has led to the development of numerous CPT analogues with improved pharmacodynamic and pharmacokinetic profiles. Three natural product-inspired drugs, namely, topotecan, irinotecan, and belotecan, are clinically approved and prescribed drugs for the treatment of several types of cancer, whereas other derivatives are in clinical trials. In this review, which covers literature from 2015 to 2020, we aim to provide a comprehensive overview and describe efforts that led to the development of a variety of CPT analogues. These efforts have led to the discovery of potent, first-in-class chemotherapeutic agents inspired by CPT. In addition, the mechanism of action, SAR studies, and recent advances of novel CPT drug delivery systems and antibody drug conjugates are discussed.
Collapse
Affiliation(s)
- Noura Khaiwa
- College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Noor R Maarouf
- College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mhd H Darwish
- College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Dima W M Alhamad
- Sharjah Institute for Medical Research, 27272, Sharjah, United Arab Emirates
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, 27272, Sharjah, United Arab Emirates
| | - Mohamad Hamad
- Sharjah Institute for Medical Research, 27272, Sharjah, United Arab Emirates; College of Health Sciences, 27272, Sharjah, United Arab Emirates
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, 27272, Sharjah, United Arab Emirates
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Taleb H Al-Tel
- College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
5
|
Zhang RH, Guo HY, Deng H, Li J, Quan ZS. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem 2021; 36:1165-1197. [PMID: 34080510 PMCID: PMC8183565 DOI: 10.1080/14756366.2021.1931861] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Piperazine moiety is a cyclic molecule containing two nitrogen atoms in positions 1 and 4, as well as four carbon atoms. Piperazine is one of the most sought heterocyclics for the development of new drug candidates with a wide range of applications. Over 100 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antioxidant, and other activities, were reviewed. This article reviewed investigations regarding piperazine groups for the modification of natural product derivatives in the last decade, highlighting parameters that affect their biological activity.
Collapse
Affiliation(s)
- Run-Hui Zhang
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hong-Yan Guo
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hao Deng
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jinzi Li
- Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
6
|
Lauria A, La Monica G, Bono A, Martorana A. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets. Eur J Med Chem 2021; 220:113555. [PMID: 34052677 DOI: 10.1016/j.ejmech.2021.113555] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022]
Abstract
Quinoline is one of the most important and versatile nitrogen heterocycles embodied in several biologically active molecules. Within the numerous quinolines developed as antiproliferative agents, this review is focused on compounds interfering with DNA structure or with proteins/enzymes involved in the regulation of double helix functional processes. In this light, a special focus is given to the quinoline compounds, acting with classical/well-known mechanisms of action (DNA intercalators or Topoisomerase inhibitors). In particular, the quinoline drugs amsacrine and camptothecin (CPT) have been studied as key lead compounds for the development of new agents with improved PK and tolerability properties. Moreover, notable attention has been paid to the quinoline molecules, which are able to interfere with emerging targets involved in cancer progression, as G-quadruplexes or the epigenetic ones (e.g.: histone deacetylase, DNA and histones methyltransferase). The antiproliferative and the enzymatic inhibition data of the reviewed compounds have been analyzed. Furthermore, concerning the SAR (structure-activity relationship) aspects, the most recurrent ligand-protein interactions are summarized, underling the structural requirements for each kind of mechanism of action.
Collapse
Affiliation(s)
- Antonino Lauria
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Gabriele La Monica
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy.
| |
Collapse
|
7
|
He W, Du Y, Zhou W, Yao C, Li X. Redox-sensitive dimeric camptothecin phosphatidylcholines-based liposomes for improved anticancer efficacy. Nanomedicine (Lond) 2019; 14:3057-3074. [PMID: 31696756 DOI: 10.2217/nnm-2019-0261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: A redox-triggered camptothecin (CPT) liposomal system was developed for an improved clinical potential in tumor therapy. Materials & methods: CPT–phosphorylcholine conjugates (CPT–SS–GPCs: CPT–SS–3–GPC and CPT–SS–11–GPC) were synthesized by conjugating CPT to glycerylphosphorylcholine via disulfide bond linker. CPT–SS–GPCs could be assembled into liposomes. Different in vitro and in vivo analyses were used to evaluate the anticancer activities of CPT–SS–GPCs. Results: CPT–SS–GPCs liposomes exhibited extremely high drug loading and uniform size of 150–200 nm. Moreover, the rapid release of parent CPT in reductive condition and high cellular uptake of CPT–SS–GPCs liposomes were observed. At last, in vitro and in vivo anticancer assay showed the enhanced efficacy of CPT–SS–GPCs liposomes. Conclusion: Redox-triggered CPT–SS–GPC liposomes have great potential in tumor therapy.
Collapse
Affiliation(s)
- Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wenya Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
8
|
Song ZL, Yang GZ, Li JC, Liu YQ, Yang CJ, Goto M, Zhang ZJ, Morris-Natschke SL, Liu H, Lee KH. Design and synthesis of novel 7-[( N-substituted-thioureidopiperazinyl)-methyl]-camptothecin derivatives as potential cytotoxic agents. Nat Prod Res 2019; 34:2022-2029. [PMID: 30784310 DOI: 10.1080/14786419.2019.1573231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As part of continuing our research on diverse C-7 derivatives of camptothecin (CPT), 16 CPT derivatives bearing piperazinyl-thiourea chemical scaffold and different substituent groups have been designed, synthesized and evaluated in vitro for cytotoxicity against five tumor cell lines (A-549, MDA-MB-231, MCF-7, KB and KBvin). As a result, all the synthesized compounds showed promising in vitro cytotoxic activity against the five tumor cell lines tested, and were more potent than irinotecan. Importantly, compounds 13 g (IC50 = 0.514 μM) and 13o (IC50 = 0.275 μM) possessed similar or better antiproliferative activity against the multidrug-resistant (MDR) KBvin subline than that of topotecan (IC50 = 0.511 μM) and merit further development as anticancer candidates for clinical trail. With these results in hand, we have a reason to conclude that incorporating piperazinyl-thiourea motifs into position-7 of camptothecin confers well cytotoxic activity against cancer cell lines, probably resulting in new anticancer drugs.
Collapse
Affiliation(s)
- Zi-Long Song
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Chen-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hua Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Pan P, Chen J, Li X, Li M, Yu H, Zhao JJ, Ni J, Wang X, Sun H, Tian S, Zhu F, Liu F, Huang Y, Hou T. Structure-Based Drug Design and Identification of H 2O-Soluble and Low Toxic Hexacyclic Camptothecin Derivatives with Improved Efficacy in Cancer and Lethal Inflammation Models in Vivo. J Med Chem 2018; 61:8613-8624. [PMID: 30227711 DOI: 10.1021/acs.jmedchem.8b00498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Camptothecin (CPT) has been shown to block disassembly of the topoisomerase I (Topo I)/DNA cleavable complex. However, the poor aqueous solubility, intrinsic instability, and severe toxicity of CPTs have limited their clinical applications. Herein, we report the design and synthesis of H2O-soluble and orally bioavailable hexacyclic CPT derivatives. By analysis of a virtual chemical library and cytotoxicity screening in vitro, 9 and 11 were identified as potential prodrugs and chosen for further characterization in vivo. Both compounds exhibited remarkable anticancer and anti-inflammation efficacies in animals and improved drug-like profiles.
Collapse
Affiliation(s)
- Peichen Pan
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Jiean Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University, Shenzhen Graduate School , Shenzhen , Guangdong 518055 , China
| | - Xijian Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University, Shenzhen Graduate School , Shenzhen , Guangdong 518055 , China
| | - Miyang Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University, Shenzhen Graduate School , Shenzhen , Guangdong 518055 , China
| | - Huidong Yu
- Rongene Pharma Co., Ltd. , Guangzhou , Guandong 510663 , China
| | - Jean J Zhao
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Jing Ni
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Xuwen Wang
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Huiyong Sun
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Sheng Tian
- College of Pharmaceutical Sciences , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Feng Zhu
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Feng Liu
- College of Pharmaceutical Sciences , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yong Huang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University, Shenzhen Graduate School , Shenzhen , Guangdong 518055 , China
| | - Tingjun Hou
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China.,State Key Lab of CAD&CG , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| |
Collapse
|
10
|
Yang W, Huang D, Zeng X, Luo D, Wang X, Hu Y. N-Sulfonyl acetylketenimine as a highly reactive intermediate for the synthesis of N-sulfonyl amidines. Chem Commun (Camb) 2018; 54:8222-8225. [PMID: 29987306 DOI: 10.1039/c8cc04699a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A highly reactive intermediate N-sulfonyl acetylketenimine was generated from a 3-butyn-2-one participating CuAAC/ring-opening method. Its high reactivity due to bearing two EWGs allowed us to offer the first example of a reaction between ketenimine and amide to synthesize N-sulfonyl amidines efficiently.
Collapse
Affiliation(s)
- Weiguang Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | | | |
Collapse
|