1
|
Romeo R, Legnani L, Chiacchio MA, Giofrè SV, Iannazzo D. Antiviral Compounds to Address Influenza Pandemics: An Update from 2016-2022. Curr Med Chem 2024; 31:2507-2549. [PMID: 37691217 DOI: 10.2174/0929867331666230907093501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
In recent decades, the world has gained experience of the dangerous effects of pandemic events caused by emerging respiratory viruses. In particular, annual epidemics of influenza are responsible for severe illness and deaths. Even if conventional influenza vaccines represent the most effective tool for preventing virus infections, they are not completely effective in patients with severe chronic disease and immunocompromised and new small molecules have emerged to prevent and control the influenza viruses. Thus, the attention of chemists is continuously focused on the synthesis of new antiviral drugs able to interact with the different molecular targets involved in the virus replication cycle. To date, different classes of influenza viruses inhibitors able to target neuraminidase enzyme, hemagglutinin protein, Matrix-2 (M2) protein ion channel, nucleoprotein or RNAdependent RNA polymerase have been synthesized using several synthetic strategies comprising the chemical modification of currently used drugs. The best results, in terms of inhibitory activity, are in the nanomolar range and have been obtained from the chemical modification of clinically used drugs such as Peramivir, Zanamivir, Oseltamir, Rimantadine, as well as sialylated molecules, and hydroxypyridinone derivatives. The aim of this review is to report, covering the period 2016-2022, the most recent routes related to the synthesis of effective influenza virus inhibitors.
Collapse
Affiliation(s)
- Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres, Messina, 98166, Italy
| | - Laura Legnani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Maria Assunta Chiacchio
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, Catania, 95125, Italy
| | - Salvatore V Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres, Messina, 98166, Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, Messina, 98166, Italy
| |
Collapse
|
2
|
Yadav Y, Tyagi R, Kumar R, Sagar R. Conformationally locked sugar derivatives and analogues as potential neuraminidase inhibitors. Eur J Med Chem 2023; 255:115410. [PMID: 37120995 DOI: 10.1016/j.ejmech.2023.115410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
The influenza virus remains a major health concern for mankind because it tends to mutate frequently and cause high morbidity. Influenza prevention and treatment are greatly aided by the use of antivirals. One such class of antivirals is neuraminidase inhibitors (NAIs), effective against influenza viruses. A neuraminidase on the virus's surface serves a vital function in viral propogation by assisting in the release of viruses from infected host cells. Neuraminidase inhibitors are the backbone in stoping such virus propagation thus helps in the treatment of influenza viruses infections. Two NAI medicines are licensed globally: Oseltamivir (Tamiflu™) and Zanamivir (Relanza™). There are two molecules that have acquired Japanese approval recently: Peramivir and Laninamivir, whereas Laninamivir octanoate is in Phase III clinical trials. The need for novel NAIs is due to frequent mutations in viruses and the rise in resistance against existing medication. The NA inhibitors (NAIs) are designed to have (oxa)cyclohexene scaffolds (a sugar scaffold) to mimic the oxonium transition state in the enzymatic cleavage of sialic acid. This review discusses in details and comprises all such conformationally locked (oxa)cyclohexene scaffolds and their analogues which have been recently designed and synthesized as potential neuraminidase inhibitors, thus as antiviral molecules. The structure-activity relationship of such diverese molecules has also been discussed in this review.
Collapse
Affiliation(s)
- Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Haryana, 136119, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Bangaru S, Madhu G, Srinivasan M, Manivannan P. Exploring flexibility, intermolecular interactions and ADMET profiles of anti-influenza agent isorhapontigenin: A quantum chemical and molecular docking study. Heliyon 2022; 8:e10122. [PMID: 36039137 PMCID: PMC9418217 DOI: 10.1016/j.heliyon.2022.e10122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/07/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Isorhapontigenin (IRPG) drug emerges as promising efficient inhibitor for H1N1 and H3N2 subtypes which belong to influenza A virus; reported with IC50 value of 35.62 and 63.50 μM respectively. When experimental data are compared to the predicted geometrical parameters and vibrational assignments (FT-IR and FT-Raman), the findings indicated a strong correlation. The absorption bands of π→π∗ transitions are revealed through UV-Vis electronic properties; this confirms that the IRPG molecule shows strong bands. Through NBO and HOMO-LUMO analysis, the kinetic stability and chemical reactivity of the IRPG molecule were investigated. By using an MEP map, the IRPG's electrophilic and nucleophilic site selectivity was assessed. In a molecular docking investigation, the IRPG molecule shows a stronger inhibition constant and binding affinity for the H1N1 and H3N2 influenza virus. The IRPG molecule thus reveals good biological actions in nature and can be used as a potential therapeutic drug candidate for H1N1 and H3N2 virus A influenza.
Collapse
Affiliation(s)
- Sathya Bangaru
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636 701, Tamilnadu, India.,SSN Research Centre, SSN College of Engineering, Kalavakkam, Chennai, 603 110, Tamilnadu, India
| | - Govindammal Madhu
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636 701, Tamilnadu, India
| | - M Srinivasan
- SSN Research Centre, SSN College of Engineering, Kalavakkam, Chennai, 603 110, Tamilnadu, India
| | - Prasath Manivannan
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636 701, Tamilnadu, India
| |
Collapse
|
4
|
Kumar S, Goicoechea S, Kumar S, Pearce CM, Durvasula R, Kempaiah P, Rathi B, Poonam. Oseltamivir analogs with potent anti-influenza virus activity. Drug Discov Today 2020; 25:1389-1402. [DOI: 10.1016/j.drudis.2020.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 11/27/2022]
|
5
|
Chtita S, Aouidate A, Belhassan A, Ousaa A, Taourati AI, Elidrissi B, Ghamali M, Bouachrine M, Lakhlifi T. QSAR study of N-substituted oseltamivir derivatives as potent avian influenza virus H5N1 inhibitors using quantum chemical descriptors and statistical methods. NEW J CHEM 2020. [DOI: 10.1039/c9nj04909f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In silico modelling studies were executed on thirty two N-substituted oseltamivir derivatives as inhibitors of influenza virus H5N1.
Collapse
Affiliation(s)
- Samir Chtita
- Laboratory Physical Chemistry of Materials
- Faculty of Sciences Ben M’Sik
- Hassan II University of Casablanca
- Casablanca
- Morocco
| | - Adnane Aouidate
- Computer-Aided Drug Discovery Research Center
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen City
- China
| | - Assia Belhassan
- Molecular Chemistry and Natural Substances Laboratory
- Department of chemistry
- Faculty of Sciences
- University Moulay Ismail
- Meknes
| | - Abdellah Ousaa
- Molecular Chemistry and Natural Substances Laboratory
- Department of chemistry
- Faculty of Sciences
- University Moulay Ismail
- Meknes
| | - Abdelali Idrissi Taourati
- Molecular Chemistry and Natural Substances Laboratory
- Department of chemistry
- Faculty of Sciences
- University Moulay Ismail
- Meknes
| | - Bouhya Elidrissi
- Molecular Chemistry and Natural Substances Laboratory
- Department of chemistry
- Faculty of Sciences
- University Moulay Ismail
- Meknes
| | - Mounir Ghamali
- Molecular Chemistry and Natural Substances Laboratory
- Department of chemistry
- Faculty of Sciences
- University Moulay Ismail
- Meknes
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory
- Department of chemistry
- Faculty of Sciences
- University Moulay Ismail
- Meknes
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory
- Department of chemistry
- Faculty of Sciences
- University Moulay Ismail
- Meknes
| |
Collapse
|
6
|
Loganathan L, Gopinath K, Sankaranarayanan VM, Kukreti R, Rajendran K, Lee JK, Muthusamy K. Computational and Pharmacogenomic Insights on Hypertension Treatment: Rational Drug Design and Optimization Strategies. Curr Drug Targets 2019; 21:18-33. [DOI: 10.2174/1389450120666190808101356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Background::
Hypertension is a prevalent cardiovascular complication caused by genetic
and nongenetic factors. Blood pressure (BP) management is difficult because most patients become
resistant to monotherapy soon after treatment initiation. Although many antihypertensive drugs are
available, some patients do not respond to multiple drugs. Identification of personalized antihypertensive
treatments is a key for better BP management.
Objective::
This review aimed to elucidate aspects of rational drug design and other methods to develop
better hypertension management.
Results::
Among hypertension-related signaling mechanisms, the renin-angiotensin-aldosterone system
is the leading genetic target for hypertension treatment. Identifying a single drug that acts on multiple
targets is an emerging strategy for hypertension treatment, and could be achieved by discovering new
drug targets with less mutated and highly conserved regions. Extending pharmacogenomics research
to include patients with hypertension receiving multiple antihypertensive drugs could help identify the
genetic markers of hypertension. However, available evidence on the role of pharmacogenomics in
hypertension is limited and primarily focused on candidate genes. Studies on hypertension pharmacogenomics
aim to identify the genetic causes of response variations to antihypertensive drugs. Genetic
association studies have identified single nucleotide polymorphisms affecting drug responses. To understand
how genetic traits alter drug responses, computational screening of mutagenesis can be utilized
to observe drug response variations at the protein level, which can help identify new inhibitors
and drug targets to manage hypertension.
Conclusions::
Rational drug design facilitates the discovery and design of potent inhibitors. However,
further research and clinical validation are required before novel inhibitors can be clinically used as
antihypertensive therapies.
Collapse
Affiliation(s)
| | - Krishnasamy Gopinath
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, Korea
| | | | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, New Delhi, India
| | - Kannan Rajendran
- Department of General Medicine, Saveetha Medical College and Hospital, Chennai, Tamil Nadu, India
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, Korea
| | | |
Collapse
|
7
|
Joudaki D, Shafiei F. QSPR Models to Predict Thermodynamic Properties of Cycloalkanes Using Molecular Descriptors and GA-MLR Method. Curr Comput Aided Drug Des 2019; 16:6-16. [PMID: 30827257 PMCID: PMC6967181 DOI: 10.2174/1573409915666190227230744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 12/03/2022]
Abstract
Aims and Objectives: QSPR models establish relationships between different types of structural information to their observed properties. In the present study the relationship between the molecular de-scriptors and quantum properties of cycloalkanes is represented. Materials and Methods: Genetic Algorithm (GA) and Multiple Linear Regressions (MLR) were successful-ly developed to predict quantum properties of cycloalkanes. A large number of molecular descriptors were calculated with Dragon software and a subset of calculated descriptors was selected with a genetic algorithm as a feature selection technique. The quantum properties consist of the heat capacity (Cv)/ Jmol-1K-1 entropy(S)/ Jmol-1K-1 and thermal energy(Eth)/ kJmol-1 were obtained from quantum-chemistry technique at the Hartree-Fock (HF) level using the ab initio 6-31G* basis sets. Results: The Genetic Algorithm (GA) method was used to select important molecular descriptors and then they were used as inputs for SPSS software package. The predictive powers of the MLR models were dis-cussed using Leave-One-Out (LOO) cross-validation, leave-group (5-fold)-out (LGO) and external predic-tion series. The statistical parameters of the training and test sets for GA–MLR models were calculated. Conclusion: The resulting quantitative GA-MLR models of Cv, S, and Eth were obtained:[r2=0.950, Q2=0.989, r2ext=0.969, MAE(overall,5-flod)=0.6825 Jmol-1K-1], [r2=0.980, Q2=0.947, r2ext=0.943, MAE(overall,5-flod)=0.5891Jmol-1K-1], and [r2=0.980, Q2=0.809, r2ext=0.985, MAE(overall,5-flod)=2.0284 kJmol-1]. The results showed that the predictive ability of the models was satisfactory, and the constitutional, topological indices and ring descriptor could be used to predict the mentioned properties of 103 cycloalkanes.
Collapse
Affiliation(s)
- Daryoush Joudaki
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Fatemeh Shafiei
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
8
|
Sumo Frien U. Changes in Germs: A Potential Preemptive Strike Against the Next Pandemic. JOURNAL OF MEDICAL SCIENCES 2017. [DOI: 10.3923/jms.2018.48.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|