1
|
Liu K, Mo M, Yu G, Yu J, Song SM, Cheng S, Li HM, Meng XL, Zeng XP, Xu GC, Luo H, Xu BX. Discovery of novel 2-(trifluoromethyl)quinolin-4-amine derivatives as potent antitumor agents with microtubule polymerization inhibitory activity. Bioorg Chem 2023; 139:106727. [PMID: 37451147 DOI: 10.1016/j.bioorg.2023.106727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
In this work, a series of 2-(trifluoromethyl)quinolin-4-amine derivatives were designed and synthesized through structural optimization strategy as a microtubule-targeted agents (MTAs) and their cytotoxicity activity against PC3, K562 and HeLa cell lines were evaluated. The half maximal inhibitory concentration (IC50) of 5e, 5f, and 5o suggested that their potency of anti-proliferative activities against HeLa cell lines were better than the combretastatin A-4. Compound 5e showed the higher anti-proliferative activity against PC3, K562 and HeLa in vitro with IC50 values of 0.49 µM, 0.08 µM and 0.01 µM, respectively. Further mechanism study indicated that the representative compound 5e was new class of tubulin inhibitors by EBI competition assay and tubulin polymerization assays, it is similar to colchicine. Immunofluorescence staining revealed that compound 5e apparently disrupted tubulin network in HeLa cells, and compound 5e arrested HeLa cells at the G2/M phase and induced cells apoptosis in a dose-dependent manner. Molecular docking results illustrated that the hydrogen bonds of represented compounds reinforced the interactions in the pocket of colchicine binding site. Preliminary results suggested that 5e deserves further research as a promising tubulin inhibitor for the development of anticancer agents.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Min Mo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Shan-Min Song
- Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Hui-Min Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Xue-Ling Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Xiao-Ping Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Guang-Can Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China.
| | - Bi-Xue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China.
| |
Collapse
|
2
|
Parvin T. Multicomponent Reactions Using C,N-Binucleophilic Nature of Aminopyrazoles: Construction of Pyrazole-Fused Heterocycles. Top Curr Chem (Cham) 2023; 381:19. [PMID: 37237061 DOI: 10.1007/s41061-023-00427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023]
Abstract
Synthesis of pyrazole-fused heterocycles has gained considerable attention in recent years due to their wide applications in medicinal chemistry. Aminopyrazoles are versatile building blocks for the synthesis of pyrazole-fused heterocycles by multicomponent reactions. Due to the presence of multiple reaction sites, they have fascinating chemical reactivity. Thus, they have been extensively used in multicomponent reactions for the construction of pyrazole-fused heterocycles. Although few review articles on the preparation and applications of aminopyrazoles are known in the literature, to date there is no dedicated review article on the construction of pyrazole-fused heterocycles exploring the reactivity of amino pyrazoles as C,N-binucleophiles in multicomponent reactions. Considering this, herein the multicomponent reactions for the construction of pyrazole-fused heterocycles exploring C,N-binucleophilic nature of amino pyrazoles have been reported.
Collapse
Affiliation(s)
- Tasneem Parvin
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna, 800005, India.
| |
Collapse
|
3
|
Mu Y, Jiang R, Hong Y, Hou J, Yang Z, Tang D. Acid-catalyzed synthesis of pyrazolo[4,3-c]quinolines from (1H-pyrazol-5-yl)anilines and ethers via the cleavage of C–O bond. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Jiang R, Mu Y, Zhang W, Hong Y, Iqbal Z, Hou J, Yang Z, Tang D. Acid-promoted synthesis of pyrazolo[4,3-c]quinoline derivatives by employing pyrazole-arylamines and β-keto esters via cleavage of C–C bonds. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Rui Jiang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Yangxiu Mu
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Wei Zhang
- Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Yu Hong
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Zafar Iqbal
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Jing Hou
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Zhixiang Yang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Dong Tang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| |
Collapse
|
5
|
Design, Synthesis, and Cytotoxicity and Topoisomerase I/IIα Inhibition Activity of Pyrazolo[4,3-f]quinoline Derivatives. Pharmaceuticals (Basel) 2022; 15:ph15040399. [PMID: 35455396 PMCID: PMC9026320 DOI: 10.3390/ph15040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
With the several targets of cancer treatment, inhibition of DNA topoisomerase activity is one of the well-known focuses in cancer chemotherapy. Here, we describe the design and synthesis of a novel series of pyrazolo[4,3-f]quinolines with potential anticancer/topoisomerase inhibition activity. Forty newly designed pyrazolo[4,3-f]quinoline derivatives were synthesized via inverse imino Diels–Alder reaction. The antiproliferative activity of the synthesized derivatives was initially measured in the human NUGC-3 cancer cell line. Then, the selected compounds 1B, 1C, 1M, 2A, 2D, 2E, 2F, and 2R with higher activity among tested compounds were screened against six cancer cell lines, including ACHN, HCT-15, MM231, NCI-H23, NUGC-3, and PC-3. The results demonstrated that the compounds 1M, 2E, and 2P were most effective in all cancer cell lines exhibiting GI50 below 8 µM. Among them, 2E showed an equivalent inhibition pattern of topoisomerase IIα activity to that of etoposide, positive control at a 100 µM dose.
Collapse
|
6
|
Tang D, Mu Y, Iqbal Z, He L, Jiang R, Hou J, Yang Z, Yang M. Construction of substituted pyrazolo[4,3‐c]quinolines via [5+1] cyclization of pyrazole‐arylamines with alcohols/amines in one pot. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Dong Tang
- Ningxia Center of Agricultural Organic Synthesis Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science Yinchuan China
- Department of Chemistry Lishui University Lishui China
| | - Yangxiu Mu
- Ningxia Center of Agricultural Organic Synthesis Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science Yinchuan China
| | - Zafar Iqbal
- Ningxia Center of Agricultural Organic Synthesis Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science Yinchuan China
| | - Lili He
- Ningxia Center of Agricultural Organic Synthesis Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science Yinchuan China
| | - Rui Jiang
- Ningxia Center of Agricultural Organic Synthesis Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science Yinchuan China
| | - Jing Hou
- Ningxia Center of Agricultural Organic Synthesis Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science Yinchuan China
| | - Zhixiang Yang
- Ningxia Center of Agricultural Organic Synthesis Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science Yinchuan China
| | - Minghua Yang
- Department of Chemistry Lishui University Lishui China
| |
Collapse
|
7
|
Sharma S, Singh A, Sharma S, Sharma R, Singh J, Kinarivala N, Nepali K, Liou JP. Tailored Quinolines Demonstrate Flexibility to Exert Antitumor Effects through Varied Mechanisms-A Medicinal Perspective. Anticancer Agents Med Chem 2021; 21:288-315. [PMID: 32900354 DOI: 10.2174/1871520620666200908104303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quinoline is considered to be a privileged heterocyclic ring owing to its presence in diverse scaffolds endowed with promising activity profiles. In particular, quinoline containing compounds have exhibited substantial antiproliferative effects through the diverse mechanism of actions, which indicates that the heteroaryl unit is flexible as well as accessible to subtle structural changes that enable its inclusion in chemically distinct anti-tumor constructs. METHODS Herein, we describe a medicinal chemistry perspective on quinolines as anticancer agents by digging into the peer-reviewed literature as well as patents published in the past few years. RESULTS This review will serve as a guiding tool for medicinal chemists and chemical biologists to gain insights about the benefits of quinoline ring installation to tune the chemical architectures for inducing potent anticancer effects. CONCLUSION Quinoline ring containing anticancer agents presents enough optimism and promise in the field of drug discovery to motivate the researchers towards the continued explorations on such scaffolds. It is highly likely that adequate efforts in this direction might yield some potential cancer therapeutics in the future.
Collapse
Affiliation(s)
- Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jagjeet Singh
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | - Nihar Kinarivala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing P Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Yadav P, Shah K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg Chem 2021; 109:104639. [PMID: 33618829 DOI: 10.1016/j.bioorg.2021.104639] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Quinoline is a versatile pharmacophore, a privileged scaffold and an outstanding fused heterocyclic compound with a wide range of pharmacological prospective such as anticancer, anti-inflammatory, antibacterial, antiviral drug and superlative moiety in drug discovery. The quinoline hybrids have already been shown excellent results with new targets with a different mode of actions as an inhibitor of cell proliferation by cell cycle arrest, apoptosis, angiogenesis, disruption of cell migration and modulation. This review emphasized the mode of action, structure activity relationship and molecular docking to reveal the various active pharmacophores of quinoline hybrids accountable for novel anticancer, anti-inflammatory, antibacterial and miscellaneous activities. Therefore, several quinoline candidates are under clinical trials for the treatment of certain diseases, for example ferroquine (antimalarial), dactolisib (antitumor) and pelitinib (EGFR TK inhibitors) etc. Plenty of research has been summarized the recent advances of quinoline derivatives and explore the various therapeutic prospects of this moiety. This review would help the researchers to strategically design diverse novel quinoline derivatives for the development of clinically viable drug candidates for the treatment of incurable diseases.
Collapse
Affiliation(s)
- Pratibha Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India.
| |
Collapse
|
9
|
Jadhav PM, Rode AB, Kótai L, Pawar RP, Tekale SU. Revisiting applications of molecular iodine in organic synthesis. NEW J CHEM 2021. [DOI: 10.1039/d1nj02560k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular iodine contributes significantly to organic transformations in synthetic organic chemistry. It works effectively due to its mild Lewis acidic character, ability as an oxidizing agent, good moisture stability, and easy availability.
Collapse
Affiliation(s)
- Popat M. Jadhav
- Department of Chemistry, Deogiri College, Aurangabad 431 005, Maharashtra, India
| | - Ambadas B. Rode
- Regional Centre for Biotechnology, Faridabad-121 001, Haryana (NCR Delhi), India
| | - László Kótai
- Research Centre for Natural Sciences, ELKH, H-1117, Budapest, Hungary
| | - Rajendra P. Pawar
- Department of Chemistry, Shiv Chhatrapati College, Aurangabad 431005, Maharashtra, India
| | - Sunil U. Tekale
- Department of Chemistry, Deogiri College, Aurangabad 431 005, Maharashtra, India
| |
Collapse
|
10
|
Dorababu A. Report on Recently (2017–20) Designed Quinoline‐Based Human Cancer Cell Growth Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202003888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry SRMPP Govt. First Grade College Huvinahadagali 583219 India
| |
Collapse
|
11
|
Panda P, Chakroborty S. Navigating the Synthesis of Quinoline Hybrid Molecules as Promising Anticancer Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.202002790] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pravati Panda
- Department of Chemistry Rama Devi Women's University Bhubaneswar, Odisha 751004 India
| | | |
Collapse
|
12
|
Xu Q, Dai B, Li Z, Xu L, Yang D, Gong P, Hou Y, Liu Y. Design, synthesis, and biological evaluation of 4-((6,7-dimethoxyquinoline-4-yl)oxy)aniline derivatives as FLT3 inhibitors for the treatment of acute myeloid leukemia. Bioorg Med Chem Lett 2019; 29:126630. [PMID: 31466809 DOI: 10.1016/j.bmcl.2019.126630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 01/19/2023]
Abstract
FMS-like tyrosine kinase 3 (FLT3) was an important therapeutic target in acute myeloid leukemia (AML). We synthesized two series of 4-((6,7-dimethoxyquinoline-4-yl)oxy)aniline derivatives possessing the semicarbazide moiety and 2,2,2-trifluoro-N,N'-dimethylacetamide moiety as the linker. The cell proliferation assay in vitro against HL-60 and MV4-11 cell lines demonstrated that most series I compounds containing semicarbazide moiety had more potent than Cabozantinib. Furthermore, the enzyme assay showed that compound 12c and 12g were potent FLT3 inhibitors with IC50 values of 312 nM and 384 nM, respectively. Following that, molecular docking analysis was also performed to determine possible binding mode between FLT3 and the target compound.
Collapse
Affiliation(s)
- Qiaoling Xu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Baozhu Dai
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Zhiwei Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Le Xu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Di Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Ping Gong
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yunlei Hou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| |
Collapse
|
13
|
Shylaja A, Roja SS, Priya RV, Kumar RR. Four-Component Domino Synthesis of Pyrazolo[3,4-h]quinoline-3-carbonitriles: “Turn-Off” Fluorescent Chemosensor for Fe3+ Ions. J Org Chem 2018; 83:14084-14090. [DOI: 10.1021/acs.joc.8b01991] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adaikalam Shylaja
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Somi Santharam Roja
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | | | - Raju Ranjith Kumar
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|