1
|
Zani MB, Sant'Ana AM, Tognato RC, Chagas JR, Puzer L. Human Tissue Kallikreins-Related Peptidases Are Targets for the Treatment of Skin Desquamation Diseases. Front Med (Lausanne) 2022; 8:777619. [PMID: 35356049 PMCID: PMC8959125 DOI: 10.3389/fmed.2021.777619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Human tissue Kallikrein-related peptidases (hKLKs) are serine proteases distributed in several tissues that are involved in several biological processes. In skin, many are responsible for skin desquamation in the Stratum Corneum (SC) of the epidermis, specially hKLK5, hKLK7, hKLK6, hKLK8, and hKLK14. In SC, hKLKs cleave proteins of corneodesmosomes, an important structure responsible to maintain corneocytes attached. As part of skin desquamation, hKLKs are also involved in skin diseases with abnormal desquamation and inflammation, such as Atopic Dermatitis (AD), psoriasis, and the rare disease Netherton Syndrome (NS). Many studies point to hKLK overexpression or overactive in skin diseases, and they are also part of the natural skin inflammation process, through the PAR2 cleavage pathway. Therefore, the control of hKLK activity may offer successful treatments for skin diseases, improving the quality of life in patients. Diseases like AD, Psoriasis, and NS have an impact on social life, causing pain, itchy and mental disorders. In this review, we address the molecular mechanisms of skin desquamation, emphasizing the roles of human tissue Kallikrein-related peptidases, and the promising therapies targeting the inhibition of hKLKs.
Collapse
Affiliation(s)
- Marcelo B. Zani
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil
| | - Aquiles M. Sant'Ana
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil
| | - Rafael C. Tognato
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil
| | - Jair R. Chagas
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luciano Puzer
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil
- *Correspondence: Luciano Puzer
| |
Collapse
|
2
|
Xiang F, Wang Y, Cao C, Li Q, Deng H, Zheng J, Liu X, Tan X. The Role of Kallikrein 7 in Tumorigenesis. Curr Med Chem 2021; 29:2617-2631. [PMID: 34525904 DOI: 10.2174/0929867328666210915104537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
Kallikrein 7 (KLK7) is a secreted serine protease with chymotrypsic protease activity. Abnormally high expression of KLK7 is closely related to the occurrence and development of various types of cancer. Therefore, KLK7 has been identified as a potential target for cancer drug development design in recent years. KLK7 mediates various biological and pathological processes in tumorigenesis, including cell proliferation, migration, invasion, angiogenesis, and cell metabolism, by hydrolyzing a series of substrates such as membrane proteins, extracellular matrix proteins, and cytokines. This review mainly introduces the downstream cell signaling pathways involved in the activation of KLK7 and its substrate-related proteins. This review will not only help us to better understand the mechanisms of KLK7 in regulating biological and pathological processes of cancer cells, but also lay a solid foundation for the design of inhibitors targeting KLK7.
Collapse
Affiliation(s)
- Fengyi Xiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Yueqing Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Chunyu Cao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Qingyun Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Hao Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Jun Zheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China.,The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, P.R. China
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| |
Collapse
|
3
|
Di Paolo CT, Diamandis EP, Prassas I. The role of kallikreins in inflammatory skin disorders and their potential as therapeutic targets. Crit Rev Clin Lab Sci 2020; 58:1-16. [PMID: 32568598 DOI: 10.1080/10408363.2020.1775171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin is a vital organ of the human body, serving numerous protective and functional roles that are essential for survival. Residing in the epidermis are various epidermal proteases responsible for the establishment and regulation of barrier function. The human tissue kallikrein-related peptidase family conserves homeostasis of the skin barrier through their roles in desquamation, antimicrobial defense, innate immune response, and barrier maintenance. The activity of kallikreins is tightly regulated and dysregulation of kallikrein activity is seen to contribute to the formation of several inflammatory skin disorders. This review highlights the roles of kallikreins in skin homeostasis and pathologies. Due to their part in these skin disorders, inhibitors of the skin kallikreins have become attractive therapeutics. Over the past few years, both natural and synthetic inhibitors of several kallikreins have been identified and are undergoing further development as treatments to restore compromised barrier function. This review summarizes the kallikrein inhibitors under development for this purpose. These inhibitors remain promising therapeutics in cases of severe skin inflammation not well managed by current therapies.
Collapse
Affiliation(s)
- Caitlin T Di Paolo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
4
|
Hanke S, Tindall CA, Pippel J, Ulbricht D, Pirotte B, Reboud-Ravaux M, Heiker JT, Sträter N. Structural Studies on the Inhibitory Binding Mode of Aromatic Coumarinic Esters to Human Kallikrein-Related Peptidase 7. J Med Chem 2020; 63:5723-5733. [PMID: 32374603 DOI: 10.1021/acs.jmedchem.9b01806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The serine protease kallikrein-related peptidase 7 (KLK7) is a member of the human tissue kallikreins. Its dysregulation leads to pathophysiological inflammatory processes in the skin. Furthermore, it plays a role in several types of cancer. For the treatment of KLK7-associated diseases, coumarinic esters have been developed as small-molecule enzyme inhibitors. To characterize the inhibition mode of these inhibitors, we analyzed structures of the inhibited protease by X-ray crystallography. Electron density shows the inhibitors covalently attached to His57 of the catalytic triad. This confirms the irreversible character of the inhibition process. Upon inhibitor binding, His57 undergoes an outward rotation; thus, the catalytic triad of the protease is disrupted. Besides, the halophenyl moiety of the inhibitor was absent in the final enzyme-inhibitor complex due to the hydrolysis of the ester linkage. With these results, we analyze the structural basis of KLK7 inhibition by the covalent attachment of aromatic coumarinic esters.
Collapse
Affiliation(s)
- Stefanie Hanke
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Catherine A Tindall
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Jan Pippel
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - David Ulbricht
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Michèle Reboud-Ravaux
- Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM, Adaptation biologique et Vieillissement, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - John T Heiker
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany.,IFB Adiposity Diseases, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at Leipzig University and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Fu L, Chen Y, Xu CM, Wu T, Guo HM, Lin ZH, Wang R, Shu M. 3D-QSAR, HQSAR, molecular docking, and new compound design study of 1,3,6-trisubstituted 1,4-diazepan-7-ones as human KLK7 inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02542-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Murafuji H, Muto T, Goto M, Imajo S, Sugawara H, Oyama Y, Minamitsuji Y, Miyazaki S, Murai K, Fujioka H. Discovery and structure-activity relationship of imidazolinylindole derivatives as kallikrein 7 inhibitors. Bioorg Med Chem Lett 2018; 29:334-338. [PMID: 30522951 DOI: 10.1016/j.bmcl.2018.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 02/05/2023]
Abstract
A series of imidazolinylindole derivatives were discovered as novel kallikrein 7 (KLK7, stratum corneum chymotryptic enzyme) inhibitors. Structure-activity relationship (SAR) studies led to the identification of potent human KLK7 inhibitors. By further modification of the benzenesulfonyl moiety to overcome species differences in inhibitory activity, potent inhibitors against both human and mouse KLK7 were identified. Furthermore, the complex structure of 25 with mouse KLK7 could explain the SAR and the cause of the species differences in inhibitory activity.
Collapse
Affiliation(s)
- Hidenobu Murafuji
- Asubio Pharma Co., Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tsuyoshi Muto
- Asubio Pharma Co., Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Megumi Goto
- Asubio Pharma Co., Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Seiichi Imajo
- Asubio Pharma Co., Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hajime Sugawara
- Asubio Pharma Co., Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yoshiaki Oyama
- Asubio Pharma Co., Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yutaka Minamitsuji
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Shuji Miyazaki
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Hiromichi Fujioka
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Structure-based drug design to overcome species differences in kallikrein 7 inhibition of 1,3,6-trisubstituted 1,4-diazepan-7-ones. Bioorg Med Chem 2018; 26:3639-3653. [PMID: 29884582 DOI: 10.1016/j.bmc.2018.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/13/2023]
Abstract
A series of 1,3,6-trisubstituted 1,4-diazepan-7-ones were prepared as kallikrein 7 (KLK7, stratum corneum chymotryptic enzyme) inhibitors. Previously reported compounds 1-3 were potent human KLK7 inhibitors; however, they did not exhibit inhibitory activity against mouse KLK7. Comparison of the human and mouse KLK7 structures reveals the cause of this species differences; therefore, compounds that could inhibit both KLK7s were designed, synthesized, and evaluated. Through this structure-based drug design, compound 22g was identified as an inhibitor against human and mouse KLK7, and only one of the enantiomers, (-)-22g, exhibited potent inhibitory activity. Furthermore, the crystal structure of mouse KLK7 complexed with 22g enabled the elucidation of structure-activity relationships and justified 22g as a valuable compound to overcome the species differences.
Collapse
|