1
|
Zheng M, Liu G, Han Y, Qian P, Wu M, Xiang M, Zhou Y. Synthesis, biological evaluation and mechanism study of a novel indole-pyridine chalcone derivative as antiproliferative agent against tumor cells through dual targeting tubulin and HK2. Eur J Med Chem 2025; 282:117058. [PMID: 39571460 DOI: 10.1016/j.ejmech.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
Chalcones have the characteristics of simple structure, easy synthesis and potent anti-tumor activity. Herein, a small library of fifty-five novel indole-chalcone derivatives were rationally designed and facilely synthesized. Consequently, their antiproliferative activity was systematically evaluated. Among which, compound 26 exhibited the most potent antiproliferative activity, with IC50 value of 0.764 μM against MD-MBA-231 cells. Moreover, it displayed a 5-fold selectivity compared with normal human cells. Further investigation revealed that compound 26 bound at the colchicine binding site of tubulin, disrupted their fibrous structure, thereby blocking the progression of the cell cycle and inducing apoptosis. Molecular docking and cellular thermal shift assay (CETSA) experiments further demonstrated that compound 26 could specifically bind to hexokinase 2 (HK2) and inhibit its activity, leading to impaired mitochondrial function and hindered mitochondrial respiration. Based on the quantitative structure-activity relationship study, further structure modifications were performed. Employing biotin probe pull-down assays, we demonstrated that compound 26 exerted its antiproliferative activity through a dual targeting mechanism, which simultaneously disrupted microtubule function and inhibited HK2 activity. Taken together, these results highlighted that compound 26 might be a promising antiproliferative agent for human cancer therapy.
Collapse
Affiliation(s)
- Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China
| | - Guangyuan Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China
| | - Yawei Han
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China
| | - Pengyu Qian
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China
| | - Mingze Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China
| | - Ming Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China.
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
2
|
Oubella A, Byadi S, Bimoussa A, Fawzi M, Auhmani A, Podlipnik C, Morjani H, Riahi A, Robert A, Itto MYA. Novel isoxazoline-linked 1,3,4-thiadiazole hybrids as anticancer agents: Design, synthesis, biological evaluation, molecular docking, and molecular dynamics simulation. Arch Pharm (Weinheim) 2022; 355:e2200066. [PMID: 35594031 DOI: 10.1002/ardp.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/09/2022]
Abstract
In the current study, natural (R)-carvone was utilized as a starting material for the efficient synthesis of two series of isoxazoline derivatives bearing the 1,3,4-thiadiazole moiety. The new compounds were obtained in good yields and were characterized by 1 H and 13 C NMR and HRMS analysis. The newly synthesized monoterpenic isoxazoline 1,3,4-thiadiazole and their thiosemicarbazone intermediate derivatives were evaluated for their anticancer activity in four cancer cell lines (HT-1080, A-549, MCF-7, and MDA-MB-231). Most of the synthesized compounds exhibited moderate to high anticancer effects. Compound 13c showed the highest anticancer activity with IC50 values ranging from 19.33 ± 1.81 to 34.81 ± 3.03 µM. Further investigation revealed that compounds 12e and 13c could inhibit the cell growth of HT-1080 and MCF-7 cells by inducing apoptosis through caspase-3/7 activation. The apoptotic effect was accompanied by an S phase and G2/M cell cycle arrest for 13c and 12e, respectively. Compounds 12e and 13c were assessed in silico using molecular docking and molecular dynamics. We found that compound 13c is moderately active against the caspase-3 protein, which triggers apoptosis via intrinsic and extrinsic routes, making compound 13c a promising candidate to activate the proapoptotic protein (caspase-3).
Collapse
Affiliation(s)
- Ali Oubella
- Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakesh, Morocco
| | - Said Byadi
- Equipe de Spectroscopie D'extraction et de Valorisation, Synthèse Organique, Laboratoire D'extraction et de Valorisation, Facultés des Sciences Ain Chock, Université Hassan II, Casablanca, Morocco
| | - Abdoullah Bimoussa
- Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakesh, Morocco
| | - Mourad Fawzi
- Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakesh, Morocco
| | - Aziz Auhmani
- Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakesh, Morocco
| | - Crtomir Podlipnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Hamid Morjani
- BioSpectroscopie Translationnelle, BioSpecT-EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Abdelkhalek Riahi
- Equipe MSO, CNRS UMR 7312 Institut de Chimie Moléculaire (ICMR), Université de Reims Champagne-Ardenne, Reims, France
| | - Anthony Robert
- Equipe MSO, CNRS UMR 7312 Institut de Chimie Moléculaire (ICMR), Université de Reims Champagne-Ardenne, Reims, France
| | - My Youssef A Itto
- Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakesh, Morocco
| |
Collapse
|
3
|
Mardianingrum R, Hariono M, Ruswanto R, Yusuf M, Muchtaridi M. Synthesis, Anticancer Activity, Structure-Activity Relationship, and Molecular Modeling Studies of α-Mangostin Derivatives as hERα Inhibitor. J Chem Inf Model 2021; 62:5305-5316. [PMID: 34854302 DOI: 10.1021/acs.jcim.1c00926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
α-Mangostin is one of the secondary metabolites in mangosteen pericarp, which has been reported to have anti-breast cancer activity. In our previous study, three α-mangostin derivatives were computationally designed as hERα antagonists. In this present study, the designed compounds were synthesized undergoing a benzoylation reaction between α-mangostin with three benzoyl chloride derivatives to produce three derivatives, namely, AMB-1, AMB-2, and AMB-10. The synthesized compounds were then evaluated for their antiproliferative activity against the MCF-7 breast cancer cell model with hERα as the protein target. The in vitro assay shows moderate activity (57-126 μM) for all derivatives. The dynamic behaviors of all ligands, including α-mangostin and 4-hydroxytamoxifen (4-OHT), were studied with 100 ns of MD simulation. The structure-activity relationship shows that although it does not entirely concord with the expected design, it can explain the trend of α-mangostin and its derivatives antiproliferative activities against MCF-7, which associates with hERα antagonism.
Collapse
Affiliation(s)
- Richa Mardianingrum
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Sumedang 45363, West Java, Indonesia.,Pharmacy Program, Faculty of Health Science, Universitas Perjuangan, Tasikmalaya 46115, West Java, Indonesia
| | - Maywan Hariono
- Faculty of Pharmacy, Sanata Dharma University, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Ruswanto Ruswanto
- Pharmacy Program, STIKes Bakti Tunas Husada, Tasikmalaya 46115, West Java, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jatinangor, Sumedang 45363, West Java, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Sumedang 45363, West Java, Indonesia
| |
Collapse
|
4
|
Vesga LC, Silva AMP, Bernal CC, Mendez-Sánchez SC, Romero Bohórquez AR. Tetrahydroquinoline/4,5-dihydroisoxazole hybrids with a remarkable effect over mitochondrial bioenergetic metabolism on melanoma cell line B16F10. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization. Bioorg Med Chem Lett 2020; 30:127592. [PMID: 33010448 DOI: 10.1016/j.bmcl.2020.127592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
In search of new active molecules against MCF-7, A549 and HepG2, tetrazole based pyrazoline and isoxazoline derivatives under both conventional and ultrasonic irradiation method were designed and efficiently synthesized. Structures of newly synthesized compounds 5a-h and 6a-h were characterized by 1H NMR, 13C NMR, MS and elemental analysis. Several derivatives were found to be excellent cytotoxic against MCF-7, A549 and HepG2 cell lines characterized by lower IC50 values (0.78-3.12 µg/mL). Compounds 5b and 5c demonstrated an antiproliferative effect comparable to that of CA-4. Western blot analysis revealed that, reported compounds accumulate more tubulin in the soluble fraction. Docking studies suggested that, binding of these compounds mimics at the colchicine site of tubulin. In vitro study revealed that the tetrazole based pyrazolines and isoxazolines may possess ideal structural requirements for further development of novel therapeutic agents.
Collapse
|
6
|
Neto RDAM, Santos CBR, Henriques SVC, Machado LDO, Cruz JN, da Silva CHTDP, Federico LB, Oliveira EHCD, de Souza MPC, da Silva PNB, Taft CA, Ferreira IM, Gomes MRF. Novel chalcones derivatives with potential antineoplastic activity investigated by docking and molecular dynamics simulations. J Biomol Struct Dyn 2020; 40:2204-2216. [DOI: 10.1080/07391102.2020.1839562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Raimundo de A. M. Neto
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | - Cleydson B. R. Santos
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | | | - Letícia de O. Machado
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | - Jorddy N. Cruz
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | | | - Leonardo B. Federico
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | | | | | | | - Carlton A. Taft
- Centro Brasileiro de Pesquisas Físicas, Urca, Rio de Janeiro, Brasil
| | | | - Madson R. F. Gomes
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| |
Collapse
|
7
|
The importance of indole and azaindole scaffold in the development of antitumor agents. Eur J Med Chem 2020; 203:112506. [PMID: 32688198 DOI: 10.1016/j.ejmech.2020.112506] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
With some indoles and azaindoles being successfully developed as anticancer drugs, the design and synthesis of indole and azaindole derivatives with remarkable antitumor activity has received increasing attention and significant progress has been made. This paper reviews the recent progress in the study of tumorigenesis, mechanism of actions and structure activity relationships about anticancer indole and azindole derivatives. Combining structure activity relationships and molecular targets-related knowledge, this review will help researchers design more effective, safe and cost-effective anticancer indoles and azindoles agents.
Collapse
|