1
|
Mann G, Daksh S, Kumar N, Kaul A, Roy BG, Thirumal M, Datta A. Pre-clinical evaluation of 99mTc-labeled chalcone derivative for amyloid-β imaging post-head trauma. J Biol Inorg Chem 2024; 29:187-199. [PMID: 38607392 DOI: 10.1007/s00775-024-02049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/08/2024] [Indexed: 04/13/2024]
Abstract
Aβ42 plaque formation is one of the preliminary pathologic events that occur post traumatic brain injury (TBI) which is also among the most noteworthy hallmarks of AD. Their pre symptomatic detection is therefore vital for better disease management. Chalcone-picolinic acid chelator derivative, 6-({[(6-carboxypyridin-2-yl)methyl](2-{4-[(2E)-3-[4-(dimethyl amino)phenyl]prop-2-enoyl]phenoxy}ethyl)amino}methyl)pyridine-2-carboxylic acid, Py-chal was synthesized to selectively identify amyloid plaques formed post head trauma using SPECT imaging by stable complexation to 99mTc with > 97% efficiency without compromising amyloid specificity. The binding potential of the Py-chal ligand to amyloid plaques remained high as confirmed by in vitro binding assay and photophysical spectra. Further, the Py-chal complex stained amyloid aggregates in the brain sections of rmTBI mice model. In vivo scintigraphy in TBI mice model displayed high uptake followed by high retention while the healthy rabbits displayed higher brain uptake followed by a rapid washout attributed to absence of amyloid plaques. Higher uptake in brain of TBI model was also confirmed by ex vivo biodistribution analysis wherein brain uptake of 3.38 ± 0.2% ID/g at 2 min p.i. was observed for TBI mice model. This was followed by prolonged retention and more than twofold higher activity as compared to sham mice brain. This preliminary data suggests the specificity of the radiotracer for amyloid detection post head trauma and applicability of 99mTc labeled Py-chal complex for TBI-induced β-amyloid SPECT imaging.
Collapse
Affiliation(s)
- Garima Mann
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, 110054, India
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, 110054, India
| | - Nikhil Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, 110054, India
| | - Ankur Kaul
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, 110054, India
| | - B G Roy
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, 110054, India
| | - M Thirumal
- Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, 110054, India.
| |
Collapse
|
2
|
Zhang M, Fu H, Hu W, Leng J, Zhang Y. Versatile Dicyanomethylene-Based Fluorescent Probes for the Detection of β-Amyloid in Alzheimer's Disease: A Theoretical Perspective. Int J Mol Sci 2022; 23:8619. [PMID: 35955758 PMCID: PMC9369443 DOI: 10.3390/ijms23158619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Motivated by the growing demand for target chemosensors designed with diagnostic or therapeutic capability for fibrils related to amyloidosis diseases, we investigated in the present work the response mechanism of dicyanomethylene-based fluorescent probes for amyloid fibril using a combined approach, including molecular docking, quantum mechanics/molecular mechanics (QM/MM), and the quantum chemical method. Various binding modes for the probes in β-amyloid (Aβ) are discussed, and the fibril environment-induced molecular optical changes at the most stable site are compared to the fibril-free situation in aqueous environments. The results reveal that the fluorescence enhancement for the probes in Aβ observed experimentally is an average consequence over multiple binding sites. In particular, the conformational difference, including conjugation length and donor effect, significantly contributes to the optical property of the studied probes both in water and fibril. To further estimate the transition nature of the molecular photoabsorption and photoemission processes, the hole-electron distribution and the structural variation on the first excited state of the probes are investigated in detail. On the basis of the calculations, structure-property relationships for the studied chemosensors are established. Our computational approach with the ability to elucidate the available experimental results can be used for designing novel molecular probes with applications to Aβ imaging and the early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Jiancai Leng
- International School for Optoelectronic Engineering, School of Electrical Engineering and Automation, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.Z.); (H.F.); (W.H.)
| | - Yujin Zhang
- International School for Optoelectronic Engineering, School of Electrical Engineering and Automation, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.Z.); (H.F.); (W.H.)
| |
Collapse
|
3
|
Thapa P, Upadhyay SP, Suo WZ, Singh V, Gurung P, Lee ES, Sharma R, Sharma M. Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer's disease. Bioorg Chem 2021; 108:104681. [PMID: 33571811 PMCID: PMC7928223 DOI: 10.1016/j.bioorg.2021.104681] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Chalcone [(E)-1,3-diphenyl-2-propene-1-one], a small molecule with α, β unsaturated carbonyl group is a precursor or component of many natural flavonoids and isoflavonoids. It is one of the privileged structures in medicinal chemistry. It possesses a wide range of biological activities encouraging many medicinal chemists to study this scaffold for its usefulness to oncology, infectious diseases, virology and neurodegenerative diseases including Alzheimer's disease (AD). Small molecular size, convenient and cost-effective synthesis, and flexibility for modifications to modulate lipophilicity suitable for blood brain barrier (BBB) permeability make chalcones a preferred candidate for their therapeutic and diagnostic potential in AD. This review summarizes and highlights the importance of chalcone and its analogs as single target small therapeutic agents, multi-target directed ligands (MTDLs) as well as molecular imaging agents for AD. The information summarized here will guide many medicinal chemist and researchers involved in drug discovery to consider chalcone as a potential scaffold for the development of anti-AD agents including theranostics.
Collapse
Affiliation(s)
- Pritam Thapa
- Drug Discovery Program, Midwest Veterans' Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA.
| | - Sunil P Upadhyay
- Drug Discovery Program, Midwest Veterans' Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| | - William Z Suo
- Laboratory for Alzheimer's Disease & Aging Research, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Vikas Singh
- Division of Neurology, KCVA Medical Center, Kansas City, MO, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA
| | - Eung Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Ram Sharma
- Drug Discovery Program, Midwest Veterans' Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| | - Mukut Sharma
- Drug Discovery Program, Midwest Veterans' Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| |
Collapse
|
4
|
Zhang Y, Ding C, Li C, Wang X. Advances in fluorescent probes for detection and imaging of amyloid-β peptides in Alzheimer's disease. Adv Clin Chem 2021; 103:135-190. [PMID: 34229849 DOI: 10.1016/bs.acc.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid plaques generated from the accumulation of amyloid-β peptides (Aβ) fibrils in the brain is one of the main hallmarks of Alzheimer's disease (AD), a most common neurodegenerative disorder. Aβ aggregation can produce neurotoxic oligomers and fibrils, which has been widely accepted as the causative factor in AD pathogenesis. Accordingly, both soluble oligomers and insoluble fibrils have been considered as diagnostic biomarkers for AD. Among the existing analytical methods, fluorometry using fluorescent probes has exhibited promising potential in quantitative detection and imaging of both soluble and insoluble Aβ species, providing a valuable approach for the diagnosis and drug development of AD. In this review, the most recent advances in the fluorescent probes for soluble or insoluble Aβ aggregates are discussed in terms of design strategy, probing mechanism, and potential applications. In the end, future research directions of fluorescent probes for Aβ species are also proposed.
Collapse
Affiliation(s)
- Yunhua Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Cen Ding
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Changhong Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, PR China.
| |
Collapse
|
5
|
Ma S, Chen G, Xu J, Liu Y, Li G, Chen T, Li Y, James TD. Current strategies for the development of fluorescence-based molecular probes for visualizing the enzymes and proteins associated with Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213553] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Naghdi T, Faham S, Mahmoudi T, Pourreza N, Ghavami R, Golmohammadi H. Phytochemicals toward Green (Bio)sensing. ACS Sens 2020; 5:3770-3805. [PMID: 33301670 DOI: 10.1021/acssensors.0c02101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of numerous inherent and unique characteristics of phytochemicals as bioactive compounds derived from plants, they have been widely used as one of the most interesting nature-based compounds in a myriad of fields. Moreover, a wide variety of phytochemicals offer a plethora of fascinating optical and electrochemical features that pave the way toward their development as optical and electrochemical (bio)sensors for clinical/health diagnostics, environmental monitoring, food quality control, and bioimaging. In the current review, we highlight how phytochemicals have been tailored and used for a wide variety of optical and electrochemical (bio)sensing and bioimaging applications, after classifying and introducing them according to their chemical structures. Finally, the current challenges and future directions/perspective on the optical and electrochemical (bio)sensing applications of phytochemicals are discussed with the goal of further expanding their potential applications in (bio)sensing technology. Regarding the advantageous features of phytochemicals as highly promising and potential biomaterials, we envisage that many of the existing chemical-based (bio)sensors will be replaced by phytochemical-based ones in the near future.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Shadab Faham
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Raouf Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| |
Collapse
|
7
|
Dantas RF, Evangelista TCS, Neves BJ, Senger MR, Andrade CH, Ferreira SB, Silva-Junior FP. Dealing with frequent hitters in drug discovery: a multidisciplinary view on the issue of filtering compounds on biological screenings. Expert Opin Drug Discov 2019; 14:1269-1282. [DOI: 10.1080/17460441.2019.1654453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rafael Ferreira Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tereza Cristina Santos Evangelista
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Junior Neves
- LabChem – Laboratory of Cheminformatics, Centro Universitário de Anápolis, UniEVANGÉLICA, Anápolis, Brazil
| | - Mario Roberto Senger
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sabrina Baptista Ferreira
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Floriano Paes Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|