1
|
He J, Zhou B, Wang X, Chen Q, Jiang X, Kong T, Yao L, Zhao Y, Chen R, Xu Y, Dai H. Design, Synthesis and Bioactivities of Novel Pyridyl Containing Pyrazole Oxime Ether Derivatives. Molecules 2024; 29:2767. [PMID: 38930832 PMCID: PMC11206151 DOI: 10.3390/molecules29122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
In this research, with an aim to develop novel pyrazole oxime ether derivatives possessing potential biological activity, thirty-two pyrazole oxime ethers, including a substituted pyridine ring, have been synthesized and structurally identified through 1H NMR, 13C NMR, and HRMS. Bioassay data indicated that most of these compounds owned strong insecticidal properties against Mythimna separata, Tetranychus cinnabarinus, Plutella xylostella, and Aphis medicaginis at a dosage of 500 μg/mL, and some title compounds were active towards Nilaparvata lugens at 500 μg/mL. Furthermore, some of the designed compounds had potent insecticidal effects against M. separata, T. cinnabarinus, or A. medicaginis at 100 μg/mL, with the mortalities of compounds 8a, 8c, 8d, 8e, 8f, 8g, 8o, 8s, 8v, 8x, and 8z against A. medicaginis, in particular, all reaching 100%. Even when the dosage was lowered to 20 μg/mL, compound 8s also expressed 50% insecticidal activity against M. separata, and compounds 8a, 8e, 8f, 8o, 8v, and 8x displayed more than 60% inhibition rates against A. medicaginis. The current results provided a significant basis for the rational design of biologically active pyrazole oxime ethers in future.
Collapse
Affiliation(s)
- Jie He
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.H.); (B.Z.); (X.W.); (Q.C.); (X.J.); (T.K.); (Y.Z.); (R.C.); (Y.X.)
| | - Beibei Zhou
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.H.); (B.Z.); (X.W.); (Q.C.); (X.J.); (T.K.); (Y.Z.); (R.C.); (Y.X.)
| | - Xinjuan Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.H.); (B.Z.); (X.W.); (Q.C.); (X.J.); (T.K.); (Y.Z.); (R.C.); (Y.X.)
| | - Qi Chen
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.H.); (B.Z.); (X.W.); (Q.C.); (X.J.); (T.K.); (Y.Z.); (R.C.); (Y.X.)
| | - Xiaoqian Jiang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.H.); (B.Z.); (X.W.); (Q.C.); (X.J.); (T.K.); (Y.Z.); (R.C.); (Y.X.)
| | - Ting Kong
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.H.); (B.Z.); (X.W.); (Q.C.); (X.J.); (T.K.); (Y.Z.); (R.C.); (Y.X.)
| | - Long Yao
- Analysis and Testing Center, Nantong University, Nantong 226019, China
| | - Yingying Zhao
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.H.); (B.Z.); (X.W.); (Q.C.); (X.J.); (T.K.); (Y.Z.); (R.C.); (Y.X.)
| | - Rong Chen
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.H.); (B.Z.); (X.W.); (Q.C.); (X.J.); (T.K.); (Y.Z.); (R.C.); (Y.X.)
| | - Ying Xu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.H.); (B.Z.); (X.W.); (Q.C.); (X.J.); (T.K.); (Y.Z.); (R.C.); (Y.X.)
| | - Hong Dai
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.H.); (B.Z.); (X.W.); (Q.C.); (X.J.); (T.K.); (Y.Z.); (R.C.); (Y.X.)
| |
Collapse
|
2
|
Cai Q, Song H, Zhang Y, Zhu Z, Zhang J, Chen J. Quinoline Derivatives in Discovery and Development of Pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12373-12386. [PMID: 38775264 DOI: 10.1021/acs.jafc.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Finding highly active molecular scaffold structures is always the key research content of new pesticide discovery. In the research and development of new pesticides, the discovery of new agricultural molecular scaffold structures and new targets still faces great challenges. In recent years, quinoline derivatives have developed rapidly in the discovery of new agriculturally active molecules, especially in the discovery of fungicides. The unique quinoline scaffold has many advantages in the discovery of new pesticides and can provide innovative and feasible solutions for the discovery of new pesticides. Therefore, we reviewed the use of quinoline derivatives and their analogues as molecular scaffolds in the discovery of new pesticides since 2000. We systematically summarized the agricultural biological activity of quinoline compounds and discussed the structure-activity relationship (SAR), physiological and biochemical properties, and mechanism of action of the active compounds, hoping to provide ideas and inspiration for the discovery of new pesticides.
Collapse
Affiliation(s)
- Qingfeng Cai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, People's Republic of China
| | - Hongyi Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, People's Republic of China
| | - Yong Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, People's Republic of China
| | - Zongnan Zhu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, People's Republic of China
| | - Jixiang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
3
|
Panda SK, Sahu RP, Goswami C, Singh AK. Easily synthesizable molecular probe for the nanomolar level detection of Cd 2+ in near aqueous media: Theoretical investigations and live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123098. [PMID: 37429195 DOI: 10.1016/j.saa.2023.123098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
The present investigation highlights a quinoline-based small molecule probe (DEQ) for the detection of Cd2+ among other metal ions in near-aqueous media. The probe DEQ and its Cd2+ complex (DEQ-Cd) have been synthesized and characterized by all possible spectroscopic methods. The weakly emissive DEQ showed its strong emission in the presence of Cd2+, which is attributed to the photoinduced electron transfer (PET) along with the chelation-enhanced fluorescence (CHEF) mechanism. The 1:1 binding mode between ligand and Cd2+ is confirmed by single crystal XRD analysis, which is further supported by Job's plot and HRMS. The detection limit of the probe to recognize Cd2+ was found to be as low as 89 nM. Furthermore, DEQ can act as a reversible fluorescence probe with the off-on-off mechanism by the alternative addition of Cd2+ and EDTA. DFT and TD-DFT studies exposed the proposed mechanism after Cd2+ insertion and the obtained results for electronic spectra are in line with the experimental results. The response towards pH was quite interesting and allowed us to study its application in live cell imaging. With all the positive results, the proposed ligand DEQ can be used as a potential probe for the detection of Cd2+ in real-life applications.
Collapse
Affiliation(s)
- Suvam Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Khurda 752050, India
| | - Ram Prasad Sahu
- School of Biological Sciences, National Institute of Science Education and Research, Khurda 752050, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, Khurda 752050, India
| | - Akhilesh Kumar Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Khurda 752050, India.
| |
Collapse
|
4
|
Hekal MH, Ali YM, Abdel-Haleem DR, Abu El-Azm FSM. Diversity oriented synthesis and SAR studies of new quinazolinones and related compounds as insecticidal agents against Culex pipiens L. Larvae and associated predator. Bioorg Chem 2023; 133:106436. [PMID: 36841047 DOI: 10.1016/j.bioorg.2023.106436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
The ongoing study reports the synthesis, spectroscopic analyses and larvicidal efficacy of novel series of quinazolinone derivatives and related compounds. The structures of the products were confirmed relied on their analytical and spectral data (IR, 1H NMR, and 13C NMR). The spectral documentation promoted the successful isolation of the desirable compounds. The insecticidal activities of the synthesized compounds were assessed against laboratory and field strains of Culex pipiens larvae and a predator from the same ecological niche, Cybister tripunctatus. The results revealed that most of the tested compounds showed high potencies against lab strain of C. pipiens larvae with low resistance ratios in filed strain. In particular, compounds 15, 6 and 16 showed low LC50 values, 0.094, 0.106, 0.129 (µg/mL), respectively against lab strain of C. pipiens larvae. The present study also explored the toxicity of tested compounds against field strain of non-target C. tripunctatus. Most of tested compounds were safer than temephos, especially 15 and 6 with SI/PSF values 96.746 and 83.167, respectively. Structure-activity relationship (SAR) was discussed the effect of substituents insertion on the derivatives activities. Quinazolinone derivatives and related compounds are promising compounds in the mosquito control programs and further studies are recommended to develop more effective derivatives and reveal their mode of action.
Collapse
Affiliation(s)
- Mohamed H Hekal
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt
| | - Yasmeen M Ali
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt
| | - Doaa R Abdel-Haleem
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt
| | - Fatma S M Abu El-Azm
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt
| |
Collapse
|
5
|
An efficient PET-based probe for detection and discrimination of Zn2+ and Cd2+ in near-aqueous media and live-cell imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Jadhav PM, Rode AB, Kótai L, Pawar RP, Tekale SU. Revisiting applications of molecular iodine in organic synthesis. NEW J CHEM 2021. [DOI: 10.1039/d1nj02560k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular iodine contributes significantly to organic transformations in synthetic organic chemistry. It works effectively due to its mild Lewis acidic character, ability as an oxidizing agent, good moisture stability, and easy availability.
Collapse
Affiliation(s)
- Popat M. Jadhav
- Department of Chemistry, Deogiri College, Aurangabad 431 005, Maharashtra, India
| | - Ambadas B. Rode
- Regional Centre for Biotechnology, Faridabad-121 001, Haryana (NCR Delhi), India
| | - László Kótai
- Research Centre for Natural Sciences, ELKH, H-1117, Budapest, Hungary
| | - Rajendra P. Pawar
- Department of Chemistry, Shiv Chhatrapati College, Aurangabad 431005, Maharashtra, India
| | - Sunil U. Tekale
- Department of Chemistry, Deogiri College, Aurangabad 431 005, Maharashtra, India
| |
Collapse
|
7
|
Fan Z, Feng J, Hou Y, Rao M, Cheng J. Copper-Catalyzed Aerobic Cyclization of β,γ-Unsaturated Hydrazones with Concomitant C═C Bond Cleavage. Org Lett 2020; 22:7981-7985. [PMID: 33021381 DOI: 10.1021/acs.orglett.0c02911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A Cu-catalyzed aerobic oxidative cyclization of β,γ-unsaturated hydrazones for the preparation of pyrazole derivatives has been developed. The hydrazonyl radical promoted the cyclization, along with a concomitant C═C bond cleavage of β,γ-unsaturated hydrazones. This process has been verified via several control experiments, including a radical-trapping study, an 18O-labeling method, and the identification of the possible byproducts. The advantages of this reaction include operational simplicity, a broad reaction scope, and a mild selective reaction process.
Collapse
Affiliation(s)
- Zhenwei Fan
- State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jiahao Feng
- State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yuchen Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Min Rao
- State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
8
|
Natural product-based semisynthesis and biological evaluation of thiol/amino-Michael adducts of xanthatin derived from Xanthium strumarium as potential pesticidal agents. Bioorg Chem 2020; 97:103696. [PMID: 32135360 DOI: 10.1016/j.bioorg.2020.103696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 01/10/2023]
Abstract
Xanthatin, a natural sesquiterpene lactone, occurs as one of the major constituents of Xanthium plants (Compositae) and exhibits many important biological properties. To discover natural products-based pesticides, forty-nine Michael-type thiol/amino adducts of xanthatin were synthesized and characterized, while their pesticidal activities were investigated. Among them, compounds 2c, 2h, 2i, and 2t exhibited more potent antifungal activity against Botrytis cinerea (IC50 = 0.96, 0.38, 6.33, and 7.21 µg/mL, respectively) than xanthatin and the two commercial fungicides. Compounds 2t and 2u displayed broad-spectrum and excellent antifungal effects against all tested phytopathogenic fungi, while their IC50 values ranged from 7.21 to 75.88 µg/mL. Compounds 2a, 2f, 2l, 2m, 2v, 7c, 7e, 7h, 7i, and 7j showed moderate larvicidal activity against Plutella xylostella Linnaeus. Furthermore, compounds 2b, 7g, and 7h demonstrated significant ovicidal activity against P. xylostella with the LC50 values of 14.04, 10.00, and 11.95 mg/L, respectively. These findings suggest that thiol/amino appended in the C-13 position of xanthatin may improve antifungal and ovicidal activities for the derivatives. It was also noticed that the exocyclic double bond of xanthatin is crucial for its larvicidal activity. This work also provides some important hints for further design, synthesis, and structural modification of the xanthanolides sesquiterpene lactones toward development of the new environmentally friendly pesticides for sustainable agricultural production.
Collapse
|
9
|
Xu H, Jia A, Hou E, Liu Z, Yang R, Yang R, Guo Y. Natural Product-Based Fungicides Discovery: Design, Synthesis and Antifungal Activities of Some Sarisan Analogs Containing 1,3,4-Oxadiazole Moieties. Chem Biodivers 2020; 17:e1900570. [PMID: 31778280 DOI: 10.1002/cbdv.201900570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/28/2019] [Indexed: 11/07/2022]
Abstract
A series of sarisan analogs containing 1,3,4-oxadiazole moieties were synthesized by iodine-mediated oxidative cyclization and screened in vitro for their antifungal activities at 50 μg/mL against five phytopathogenic fungi such as Valsa mali, Curvularia lunata, Alternaria alternate, Fusarium solani and Fusarium graminearum. 1,3,4-Oxadiazole derivatives 7e, 7p, 7r, 7t and 7u exhibited potent and a broad spectrum of antifungal activities against at least three phytopathogenic fungi at the concentration of 50 μg/mL. Especially, compound 7r displayed more potent antifungal activities against five phytopathogenic fungi than the positive control hymexazol. The EC50 of 7r against V. mali, C. lunata and A. alternate were 12.6, 14.5 and 17.0 μg/mL, respectively. Additionally, some interesting results of structure-activity relationships (SARs) were also observed.
Collapse
Affiliation(s)
- Hongyu Xu
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, No. 45 Chengde Street, Jilin, 132022, P. R. China
| | - Ao Jia
- Department of Pharmacy, Fuwai Central China Cardiovascular Hospital, No. 1 Fuwai Road, Zhengzhou, 451450, P. R. China
| | - Enhua Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhiyan Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rui Yang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Ruige Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|