1
|
Fang G, Chen H, Cheng Z, Tang Z, Wan Y. Azaindole derivatives as potential kinase inhibitors and their SARs elucidation. Eur J Med Chem 2023; 258:115621. [PMID: 37423125 DOI: 10.1016/j.ejmech.2023.115621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Currently, heterocycles have occupied an important position in the fields of drug design. Among them, azaindole moiety is regarded as one privileged scaffold to develop therapeutic agents. Since two nitrogen atoms of azaindole increase the possibility to form hydrogen bonds in the adenosine triphosphate (ATP)-binding site, azaindole derivatives are important sources of kinase inhibitors. Moreover, some of them have been on the market or in clinical trials for the treatment of some kinase-related diseases (e.g., vemurafenib, pexidartinib, decernotinib). In this review, we focused on the recent development of azaindole derivatives as potential kinase inhibitors based on kinase targets, such as adaptor-associated kinase 1 (AAK1), anaplastic lymphoma kinase (ALK), AXL, cell division cycle 7 (Cdc7), cyclin-dependent kinases (CDKs), dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A), fibroblast growth factor receptor 4 (FGFR4), phosphatidylinositol 3-kinase (PI3K) and proviral insertion site in moloney murine leukemia virus (PIM) kinases. Meanwhile, the structure-activity relationships (SARs) of most azaindole derivatives were also elucidated. In addition, the binding modes of some azaindoles complexed with kinases were also investigated during the SARs elucidation. This review may offer an insight for medicinal chemists to rationally design more potent kinase inhibitors bearing the azaindole scaffold.
Collapse
Affiliation(s)
- Guoqing Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zhiyun Cheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China.
| |
Collapse
|
2
|
Xu L, Meng YC, Guo P, Li M, Shao L, Huang JH. Recent Research Advances in Small-Molecule Pan-PIM Inhibitors. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1758692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PIM kinase is consequently emerging as a promising target for cancer therapeutics and immunomodulation. PIM kinases are overexpressed in a variety of hematological malignancies and solid tumors, and their inhibition has become a strong therapeutic interest. Currently, some pan-PIM kinase inhibitors are being developed under different phases of clinical trials. Based on the different scaffold structures, they can be classified into various subclasses. The X-ray structure of the kinase complex outlines the rationale of hit compound confirmation in the early stage. Structure–activity relationships allow us to rationally explore chemical space and further optimize multiple physicochemical and biological properties. This review focuses on the discovery and development of small-molecule pan-PIM kinase inhibitors in the current research, and hopes to provide guidance for future exploration of the inhibitors.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yu-Cheng Meng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Peng Guo
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Ming Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Lei Shao
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Jun-Hai Huang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Song F, Bian Y, Liu J, Li Z, Zhao L, Fang J, Lai Y, Zhou M. Indole Alkaloids, Synthetic Dimers and Hybrids with Potential In Vivo Anticancer Activity. Curr Top Med Chem 2021; 21:377-403. [PMID: 32901583 DOI: 10.2174/1568026620666200908162311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Indole, a heterocyclic organic compound, is one of the most promising heterocycles found in natural and synthetic sources since its derivatives possess fascinating structural diversity and various therapeutic properties. Indole alkaloids, synthetic dimers and hybrids could act on diverse targets in cancer cells, and consequently, possess potential antiproliferative effects on various cancers both in vitro and in vivo. Vinblastine, midostaurin, and anlotinib as the representative of indole alkaloids, synthetic dimers and hybrids respectively, have already been clinically applied to treat many types of cancers, demonstrating indole alkaloids, synthetic dimers and hybrids are useful scaffolds for the development of novel anticancer agents. Covering articles published between 2010 and 2020, this review emphasizes the recent development of indole alkaloids, synthetic dimers and hybrids with potential in vivo therapeutic application for cancers.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Jing Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Li Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Yonghong Lai
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| |
Collapse
|
4
|
Barberis C, Erdman P, Czekaj M, Fire L, Pribish J, Tserlin E, Maniar S, Batchelor JD, Liu J, Patel VF, Hebert A, Levit M, Wang A, Sun F, Huang SMA. Discovery of SARxxxx92, a pan-PIM kinase inhibitor, efficacious in a KG1 tumor model. Bioorg Med Chem Lett 2020; 30:127625. [PMID: 33096160 DOI: 10.1016/j.bmcl.2020.127625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022]
Abstract
N-substituted azaindoles were discovered as potent pan-PIM inhibitors. Lead optimization, guided by structure and focused on physico-chemical properties allowed us to solve inherent hERG and permeability liabilities, and provided compound 27, which subsequently impacted KG-1 tumor growth in a mouse model.
Collapse
Affiliation(s)
- Claude Barberis
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States.
| | - Paul Erdman
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States; Present address: AbbVie, 100 Abbott Park Road, Abbott Park, IL 60064-3500, United States
| | - Mark Czekaj
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Luke Fire
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States; Present address: Rakuten Medical, 11080 Roselle St, San Diego, CA 92121, United States
| | - James Pribish
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Elina Tserlin
- Present address: Qiagen, 561 Virginia Road, Concord, MA 01742, United States
| | - Sachin Maniar
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Joseph D Batchelor
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Jinyu Liu
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Vinod F Patel
- Present address: TME Therapeutics, 3 Mossy Lane, Acton, MA 01720, United States
| | - Andrew Hebert
- Oncology Biochemistry, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Mikhail Levit
- Oncology Biochemistry, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Anlai Wang
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Frank Sun
- Oncology Pharmacology, Sanofi, 640 Memorial Drive, Cambridge MA 02139, United States
| | - Shih-Min A Huang
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge MA 02139, United States; Present address: Bristol-Myers Squibb, 3551 Lawrenceville Princeton, Lawrence Township, NJ 08648, United States
| |
Collapse
|
5
|
3D-QSAR and Pharmacophore modeling of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Struct Chem 2020. [DOI: 10.1007/s11224-020-01503-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Wang K, Zhu H, Zhao H, Zhang K, Tian Y. Application of carbamyl in structural optimization. Bioorg Chem 2020; 98:103757. [PMID: 32217370 DOI: 10.1016/j.bioorg.2020.103757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Carbamyl is considered a privileged structure in medicinal chemistry. It has a wide range of biological activities such as antimicrobial, anticancer, anti-epilepsy, for which the best evidence is a number of marketed carbamyl-containing drugs. Carbamyl is formed of primary amine and carbonyl moieties that act as hydrogen bond donors and hydrogen acceptors with residues of targets respectively, which are benefit for improving pharmacological activities. In other cases, the introduced carbamyl improves drug-like properties including oral bioavailability. In this review, we introduce the carbamyl-containing drugs and the application of carbamyl in structural optimization as a result of enhancing activities or/and drug-like properties.
Collapse
Affiliation(s)
- Kuanglei Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hongxi Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hongqian Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Yongshou Tian
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
7
|
AboulMagd AM, Hassan HM, Sayed AM, Abdelmohsen UR, Abdel-Rahman HM. Saccharomonosporine A inspiration; synthesis of potent analogues as potential PIM kinase inhibitors. RSC Adv 2020; 10:6752-6762. [PMID: 35493904 PMCID: PMC9049778 DOI: 10.1039/c9ra10216g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Saccharomonosporine A was recently reported as a natural anti-cancer agent working through inhibition of a Proviral integration site for Moloney murine leukemia virus-1 (PIM-1) kinase. Structural bioisosteres of this natural product were synthesized and tested against PIM kinase enzymes. They showed potent inhibitory activity against all the known PIM kinases (PIM-1, 2 and 3) with IC50 values ranging from 0.22 to 2.46 μM. Compound 5 was the most potent pan-inhibitor with IC50 values of 0.37, 0.41, and 0.3 μM, against PIM-1, 2, 3 respectively. Compounds 4–6 were tested for their cytotoxic activities against 3 cell lines: H1650, HT-29, and HL-60. Compound 5 exhibited significant cytotoxic activity against human colon adenocarcinoma HT-29 and the human promyelocytic leukemia HL-60, with IC50 μM values of 1.4 and 1.7 respectively. Molecular docking and homology modeling studies were carried out to confirm the affinity of these synthesized compounds to the three different PIM kinases. Additionally, a number of in silico predictions, ADME/Tox, were adopted to evaluate their drug-likeness. The E isomer of compound 5 exhibited a potent inhibitory effect against PIM kinase isoforms of IC50s 0.30–0.41 μM.![]()
Collapse
Affiliation(s)
- Asmaa M. AboulMagd
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Nahda University
- Beni Suef
- Egypt
| | - Hossam M. Hassan
- Pharmacognosy Department
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Ahmed M. Sayed
- Pharmacognosy Department
- Faculty of Pharmacy
- Nahda University
- Beni-Suef
- Egypt
| | | | - Hamdy M. Abdel-Rahman
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Nahda University
- Beni Suef
- Egypt
| |
Collapse
|