1
|
Dai R, Bao X, Liu C, Yin X, Zhu Z, Zheng Z, Wang B, Yang K, Wen H, Li W, Zhu H, Du Q, Liu J. Drug discovery of N-methyl-pyrazole derivatives as potent selective estrogen receptor degrader (SERD) for the treatment of breast cancer. Eur J Med Chem 2024; 279:116894. [PMID: 39357315 DOI: 10.1016/j.ejmech.2024.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Nowadays, ERα is considered to be a primary target for the treatment of breast cancer, and selective estrogen receptor degraders (SERDs) are emerging as promising antitumor agents. By analysing ERα-SERDs complexes, the pharmacophore features of SERDs and the crucial protein-ligand interactions were identified. Then, by utilizing the scaffold-hopping and bioisosteres strategy, 23 novel derivatives were designed, synthesized and biologically evaluated. Among these derivatives, A20 exhibited potent ERα binding affinity (IC50 = 24.0 nM), degradation ability (EC50 = 5.3 nM), excellent ER selectivity, and outstanding anti-proliferative effects on MCF-7 cells (IC50 = 0.28 nM). Further biological studies revealed that A20 could degrade ERα through proteasome-mediated pathway, suppress signal transduction of MCF-7 cells, and arrest the cell cycle in G1 phase. Moreover, A20 showed excellent antitumor effect (TGI = 92.98 %, 30 mg kg-1 day-1) in the MCF-7 xenograft model in vivo with good safety and favorable pharmacokinetics (F = 39.6 %), making it a promising candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Rupeng Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xueting Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xunkai Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenzhen Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhe Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haohao Zhu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Adewumi AT, Mosebi S. Characteristic Binding Landscape of Estrogen Receptor-α36 Protein Enhances Promising Cancer Drug Design. Biomolecules 2023; 13:1798. [PMID: 38136668 PMCID: PMC10741999 DOI: 10.3390/biom13121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer (BC) remains the most common cancer among women worldwide, and estrogen receptor-α expression is a critical diagnostic factor for BC. Estrogen receptor (ER-α36) is a dominant-negative effector of ER-α66-mediated estrogen-responsive gene pathways. ER-α36 is a novel target that mediates the non-genomic estrogen signaling pathway. However, the crystallized structure of ER-α36 remains unavailable for molecular studies. ER-positive and triple-negative BC tumors aggressively resist the FDA-approved drugs; therefore, highly potent structure-based inhibitors with preeminent benefits over toxicity will preferably replace the current BC treatment. Broussoflanol B (BFB), a B. papyrifera bark compound, exhibits potent growth inhibitory activity in ER-negative BC cells by inducing cell cycle arrest. For the first time, we unravel the comparative dynamic events of the enzymes' structures and the binding mechanisms of BFB when bound to the ER-α36 and ER-α66 ligand-binding domain using an all-atom molecular dynamics simulations approach and MM/PBSA-binding-free energy calculations. The dynamic findings have revealed that ER-α36 and ER-α66 LBD undergo timescale "coiling", opening and closing conformations favoring the high-affinity BFB-bound ER-α36 (ΔG = -52.57 kcal/mol) compared to the BFB-bound ER-α66 (ΔG = -42.41 kcal/mol). Moreover, the unbound (1.260 Å) and bound ER-α36 (1.182 Å) exhibit the highest flexibilities and atomistic motions relative to the ER-α66 systems. The RMSF (Å) of the unbound ER-α36 and ER-α66 exhibit lesser stabilities than the BFB-bound systems, resulting in higher structural flexibilities and atomistic motions than the bound variants. These findings present a model that describes the mechanisms by which the BFB compound induces downregulation-accompanied cell cycle arrest at the Gap0 and Gap1 phases.
Collapse
Affiliation(s)
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| |
Collapse
|
3
|
Dai R, Bao X, Zhang Y, Huang Y, Zhu H, Yang K, Wang B, Wen H, Li W, Liu J. Hot-Spot Residue-Based Virtual Screening of Novel Selective Estrogen-Receptor Degraders for Breast Cancer Treatment. J Chem Inf Model 2023; 63:7588-7602. [PMID: 37994801 DOI: 10.1021/acs.jcim.3c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The estrogen-receptor alfa (ERα) is considered pivotal for breast cancer treatment. Although selective estrogen-receptor degraders (SERDs) have been developed to induce ERα degradation and antagonism, their agonistic effect on the uterine tissue and poor pharmacokinetic properties limit further application of ERα; thus, discovering novel SERDs is necessary. The ligand preferentially interacts with several key residues of the protein (defined as hot-spot residues). Improving the interaction with hot-spot residues of ERα offers a promising avenue for obtaining novel SERDs. In this study, pharmacophore modeling, molecular mechanics/generalized Born surface area (MM/GBSA), and amino-acid mutation were combined to determine several hot-spot residues. Focusing on the interaction with these hot-spot residues, hit fragments A1-A3 and A9 were virtually screened from two fragment libraries. Finally, these hit fragments were linked to generate compounds B1-B3, and their biological activities were evaluated. Remarkably, compound B1 exhibited potent antitumor activity against MCF-7 cells (IC50 = 4.21 nM), favorable ERα binding affinity (Ki = 14.6 nM), and excellent ERα degradative ability (DC50 = 9.7 nM), which indicated its potential to evolve as a promising SERD for breast cancer treatment.
Collapse
Affiliation(s)
- Rupeng Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xueting Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Huang
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haohao Zhu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
4
|
Çetiner E, Sayın K, Ünal Y. Optimization, spectral characterization, QSAR, and molecular docking analyses of newly designed boron compounds. Struct Chem 2022. [DOI: 10.1007/s11224-022-02086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Lu Z, Cao Y, Zhang D, Meng X, Guo B, Kong D, Yang Y. Discovery of Thieno[2,3- e]indazole Derivatives as Novel Oral Selective Estrogen Receptor Degraders with Highly Improved Antitumor Effect and Favorable Druggability. J Med Chem 2022; 65:5724-5750. [PMID: 35357160 DOI: 10.1021/acs.jmedchem.2c00008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocrine therapies in the treatment of early and metastatic estrogen receptor α positive (ERα+) breast cancer (BC) are greatly limited by de novo and acquired resistance. Selective estrogen receptor degraders (SERDs) like fulvestrant provide new strategies for endocrine therapy combinations due to unique mechanisms. Herein, we disclose our structure-based optimization of LSZ102 by replacing 6-hydroxybenzothiophene with 6H-thieno[2,3-e]indazole. Subsequent acrylic acid degron modifications led us to identify compound 40 as the preferred candidate. In general, compound 40 showed much better pharmacological profiles than the lead LSZ102, exhibiting growth inhibition of wild-type or tamoxifen-resistant MCF-7 cells, potent ERα degradation, together with superior pharmacokinetic properties, directional target tissue distribution including the brain, and robust antitumor efficacy in the mice breast cancer xenograft model. Currently, 40 is being evaluated in preclinical trials.
Collapse
Affiliation(s)
- Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yangzhi Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bin Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Deyu Kong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
6
|
Discovery of GNE-502 as an orally bioavailable and potent degrader for estrogen receptor positive breast cancer. Bioorg Med Chem Lett 2021; 50:128335. [PMID: 34425201 DOI: 10.1016/j.bmcl.2021.128335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022]
Abstract
Fulvestrant is an FDA-approved drug with a dual mechanism of action (MOA), acting as a full antagonist and degrader of the estrogen receptor protein. A significant limitation of fulvestrant is the dosing regimen required for efficacy. Due to its high lipophilicity and poor pharmacokinetic profile, fulvestrant needs to be administered through intramuscular injections which leads to injection site soreness. This route of administration also limits the dose and target occupancy in patients. We envisioned a best-in-class molecule that would function with the same dual MOA as fulvestrant, but with improved physicochemical properties and would be orally bioavailable. Herein we report our progress toward that goal, resulting in a new lead GNE-502 which addressed some of the liabilities of our previously reported lead molecule GNE-149.
Collapse
|
7
|
Abstract
Efforts to improve estrogen receptor-α (ER)-targeted therapies in breast cancer have relied upon a single mechanism, with ligands having a single side chain on the ligand core that extends outward to determine antagonism of breast cancer growth. Here, we describe inhibitors with two ER-targeting moieties, one of which uses an alternate structural mechanism to generate full antagonism, freeing the side chain to independently determine other critical properties of the ligands. By combining two molecular targeting approaches into a single ER ligand, we have generated antiestrogens that function through new mechanisms and structural paradigms to achieve antagonism. These dual-mechanism ER inhibitors (DMERIs) cause alternate, noncanonical structural perturbations of the receptor ligand-binding domain (LBD) to antagonize proliferation in ER-positive breast cancer cells and in allele-specific resistance models. Our structural analyses with DMERIs highlight marked differences from current standard-of-care, single-mechanism antiestrogens. These findings uncover an enhanced flexibility of the ER LBD through which it can access nonconsensus conformational modes in response to DMERI binding, broadly and effectively suppressing ER activity.
Collapse
|
8
|
Wang L, Sharma A. The Quest for Orally Available Selective Estrogen Receptor Degraders (SERDs). ChemMedChem 2020; 15:2072-2097. [PMID: 32916035 DOI: 10.1002/cmdc.202000473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Indexed: 01/10/2023]
Abstract
Estrogen receptor-alpha (ERα) is the target of endocrine therapies for the treatment of more than 70 % of ERα-positive breast cancers. Selective estrogen receptor degraders (SERDs) antagonize estrogen binding and target the receptor for degradation, representing the last line of treatment for resistant metastatic breast cancer patients. However, the clinical efficacy of the lone clinically approved SERD (Fulvestrant) is limited by its poor oral bioavailability. Recently, several analogues of GW5638, an acrylic acid-based ERα ligand developed by Glaxo Research Institute in 1994, have been reported as promising orally bioavailable SERDs. Some of these compounds are currently in clinical trials, while various other structurally novel SERDs have also been reported by pharma as well as academic research groups. This review provides a critical analysis of the recent developments in orally available SERDs, with a focus on the structure-activity relationships, binding interactions and pharmacokinetic properties of these compounds.
Collapse
Affiliation(s)
- Lucia Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Abhishek Sharma
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| |
Collapse
|
9
|
Liang J, Blake R, Chang J, Friedman LS, Goodacre S, Hartman S, Ingalla ER, Kiefer JR, Kleinheinz T, Labadie S, Li J, Lai KW, Liao J, Mody V, McLean N, Metcalfe C, Nannini M, Otwine D, Ran Y, Ray N, Roussel F, Sambrone A, Sampath D, Vinogradova M, Wai J, Wang T, Yeap K, Young A, Zbieg J, Zhang B, Zheng X, Zhong Y, Wang X. Discovery of GNE-149 as a Full Antagonist and Efficient Degrader of Estrogen Receptor alpha for ER+ Breast Cancer. ACS Med Chem Lett 2020; 11:1342-1347. [PMID: 32551022 PMCID: PMC7294714 DOI: 10.1021/acsmedchemlett.0c00224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a well-validated drug target for ER-positive (ER+) breast cancer. Fulvestrant is FDA-approved to treat ER+ breast cancer and works through two mechanisms-as a full antagonist and selective estrogen receptor degrader (SERD)-but lacks oral bioavailability. Thus, we envisioned a "best-in-class" molecule with the same dual mechanisms as fulvestrant, but with significant oral exposure. Through lead optimization, we discovered a tool molecule 12 (GNE-149) with improved degradation and antiproliferative activity in both MCF7 and T47D cells. To illustrate the binding mode and key interactions of this scaffold with ERα, we obtained a cocrystal structure of 6 that showed ionic interaction of azetidine with Asp351 residue. Importantly, 12 showed favorable metabolic stability and good oral exposure. 12 exhibited antagonist effect in the uterus and demonstrated robust dose-dependent efficacy in xenograft models.
Collapse
Affiliation(s)
- Jun Liang
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert Blake
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae Chang
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lori S. Friedman
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Simon Goodacre
- Charles
River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Steven Hartman
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ellen Rei Ingalla
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - James R. Kiefer
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tracy Kleinheinz
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sharada Labadie
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jun Li
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kwong Wah Lai
- WuXi
AppTec Co., Ltd, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R.
China
| | - Jiangpeng Liao
- WuXi
AppTec Co., Ltd, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R.
China
| | - Vidhi Mody
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Neville McLean
- Charles
River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Ciara Metcalfe
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michelle Nannini
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel Otwine
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yingqing Ran
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nick Ray
- Charles
River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Fabien Roussel
- Charles
River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Amy Sambrone
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Deepak Sampath
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Maia Vinogradova
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi
AppTec Co., Ltd, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R.
China
| | - Tao Wang
- WuXi
AppTec Co., Ltd, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R.
China
| | - Kuen Yeap
- Charles
River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Amy Young
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason Zbieg
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Birong Zhang
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaoping Zheng
- WuXi
AppTec Co., Ltd, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R.
China
| | - Yu Zhong
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaojing Wang
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
10
|
Labadie SS, Li J, Blake RA, Chang JH, Goodacre S, Hartman SJ, Liang W, Kiefer JR, Kleinheinz T, Lai T, Liao J, Ortwine DF, Mody V, Ray NC, Roussel F, Vinogradova M, Yeap SK, Zhang B, Zheng X, Zbieg JR, Liang J, Wang X. Discovery of a C-8 hydroxychromene as a potent degrader of estrogen receptor alpha with improved rat oral exposure over GDC-0927. Bioorg Med Chem Lett 2019; 29:2090-2093. [PMID: 31311734 DOI: 10.1016/j.bmcl.2019.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 11/26/2022]
Abstract
Phenolic groups are responsible for the high clearance and low oral bioavailability of the estrogen receptor alpha (ERα) clinical candidate GDC-0927. An exhaustive search for a backup molecule with improved pharmacokinetic (PK) properties identified several metabolically stable analogs, although in general at the expense of the desired potency and degradation efficiency. C-8 hydroxychromene 30 is the first example of a phenol-containing chromene that not only maintained excellent potency but also exhibited 10-fold higher oral exposure in rats. The improved in vivo clearance in rat was hypothesized to be the result of C-8 hydroxy group being sterically protected from glucuronide conjugation. The excellent potency underscores the possibility of replacing the presumed indispensable phenolic group at C-6 or C-7 of the chromene core. Co-crystal structures were obtained to highlight the change in key interactions and rationalize the retained potency.
Collapse
Affiliation(s)
| | - Jun Li
- Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Jae H Chang
- Genentech Inc., South San Francisco, CA 94080, USA
| | - Simon Goodacre
- Charles River Laboratories, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | | | | | - Tommy Lai
- WuXi AppTec Co., Ltd., Shanghai 200131, China
| | | | | | - Vidhi Mody
- Genentech Inc., South San Francisco, CA 94080, USA
| | - Nicholas C Ray
- Charles River Laboratories, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Fabien Roussel
- Charles River Laboratories, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | - Siew Kuen Yeap
- Charles River Laboratories, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Birong Zhang
- Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | - Jun Liang
- Genentech Inc., South San Francisco, CA 94080, USA
| | | |
Collapse
|